Spaces:
Sleeping
Sleeping
File size: 1,960 Bytes
ce4e93d ab41f33 3b79365 ab41f33 e6bead9 ab41f33 3b79365 ab41f33 3b79365 ab41f33 3b79365 ce4e93d e6bead9 ab41f33 e6bead9 ab41f33 e6bead9 ab41f33 e6bead9 ab41f33 e6bead9 3b79365 ce4e93d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
import gradio as gr
from deep_translator import GoogleTranslator
import nltk
from nltk.tokenize import word_tokenize
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
# Download necessary NLTK data
nltk.download('punkt', quiet=True)
nltk.download('stopwords', quiet=True)
nltk.download('wordnet', quiet=True)
def natural_language_understanding(text):
tokens = word_tokenize(text.lower())
stop_words = set(stopwords.words('english'))
lemmatizer = WordNetLemmatizer()
processed_tokens = [lemmatizer.lemmatize(token) for token in tokens if token not in stop_words]
return " ".join(processed_tokens)
def translate_text(text, target_language):
translator = GoogleTranslator(source='auto', target=target_language)
return translator.translate(text)
def process_input(input_text, feature, target_language):
if not input_text:
return "No input provided"
processed_text = natural_language_understanding(input_text)
if feature == "Translation":
result = translate_text(processed_text, target_language)
elif feature == "Transcription":
result = processed_text
else:
result = "Invalid feature selected"
return result
# Create Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# The Advanced Multi-Faceted Chatbot")
gr.Markdown("Enter text to interact with the chatbot. Choose a feature and specify language for translation if needed.")
input_text = gr.Textbox(label="Input Text")
with gr.Row():
feature = gr.Radio(["Translation", "Transcription"], label="Feature")
target_language = gr.Textbox(label="Target Language (e.g., 'fr' for French)")
submit_button = gr.Button("Process")
result_text = gr.Textbox(label="Result")
submit_button.click(
process_input,
inputs=[input_text, feature, target_language],
outputs=result_text
)
# Launch the interface
demo.launch() |