Spaces:
Running
Running
File size: 10,949 Bytes
27d8a02 7d8ec5e 27d8a02 6916a8a 822fee8 5fc5e6a 0258ba7 5fc5e6a 822fee8 27d8a02 19d8d8c c4e3ea5 822fee8 27d8a02 df97270 27d8a02 3dfd15f aadc32d 27d8a02 aadc32d 27d8a02 aadc32d 0efb9f9 6916a8a 9c8ba2d aadc32d 6916a8a aadc32d 6916a8a aadc32d 6916a8a aadc32d 6916a8a aadc32d 6916a8a aadc32d 6916a8a aadc32d 6916a8a aadc32d 6916a8a aadc32d 6916a8a aadc32d 6916a8a aadc32d 6916a8a aadc32d 6916a8a aadc32d 6916a8a 9c8ba2d 6916a8a 9c8ba2d aadc32d 826aebe 6916a8a aadc32d 826aebe aadc32d 826aebe aadc32d 826aebe aadc32d 826aebe aadc32d 505497c 826aebe 6916a8a 826aebe aadc32d 7e4e6e0 aadc32d 7e4e6e0 aadc32d 7e4e6e0 aadc32d 7e4e6e0 aadc32d 7e4e6e0 aadc32d 7e4e6e0 aadc32d 7e4e6e0 aadc32d 826aebe bd14ff7 7e4e6e0 aadc32d 7e4e6e0 aadc32d 7e4e6e0 aadc32d 7e4e6e0 aadc32d 7e4e6e0 45e6457 7e4e6e0 aadc32d 7e4e6e0 aadc32d eb71bff aadc32d eb71bff aadc32d eb71bff aadc32d eb71bff aadc32d 7e4e6e0 27d8a02 aadc32d 27d8a02 aadc32d 822fee8 aadc32d 822fee8 27d8a02 822fee8 27d8a02 822fee8 c4e3ea5 5fc5e6a 27d8a02 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
import os
import shutil
import base64
import time
import concurrent.futures
from PIL import Image
from transformers import BlipProcessor, BlipForConditionalGeneration
import torch
from datetime import datetime
from reportlab.lib.pagesizes import letter
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Image as PDFImage
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
from reportlab.lib import colors
from simple_salesforce import Salesforce
from dotenv import load_dotenv
import gradio as gr
# Load environment variables from .env file
load_dotenv()
# Salesforce credentials
SF_USERNAME = os.getenv('SF_USERNAME')
SF_PASSWORD = os.getenv('SF_PASSWORD')
SF_SECURITY_TOKEN = os.getenv('SF_SECURITY_TOKEN')
# Initialize Salesforce connection
try:
sf = Salesforce(username=SF_USERNAME, password=SF_PASSWORD, security_token=SF_SECURITY_TOKEN)
except Exception as e:
sf = None
print(f"Failed to connect to Salesforce: {str(e)}")
# Load BLIP model and processor
device = "cuda" if torch.cuda.is_available() else "cpu"
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
model.eval().to(device)
# Inference function to generate captions dynamically based on image content
def generate_captions_from_image(image):
if image.mode != "RGB":
image = image.convert("RGB")
# Resize for faster processing
image = image.resize((224, 224)) # Adjust to smaller resolution for faster inference
# Preprocess the image and generate a caption
inputs = processor(image, return_tensors="pt").to(device, torch.float16)
output = model.generate(**inputs, max_length=50)
caption = processor.decode(output[0], skip_special_tokens=True)
return caption
# Function to save DPR text to a PDF file
def save_dpr_to_pdf(dpr_text, image_paths, captions, filename):
try:
# Create a PDF document
doc = SimpleDocTemplate(filename, pagesize=letter)
styles = getSampleStyleSheet()
# Define custom styles
title_style = ParagraphStyle(
name='Title',
fontSize=16,
leading=20,
alignment=1, # Center
spaceAfter=20,
textColor=colors.black,
fontName='Helvetica-Bold'
)
body_style = ParagraphStyle(
name='Body',
fontSize=12,
leading=14,
spaceAfter=10,
textColor=colors.black,
fontName='Helvetica'
)
# Build the PDF content
flowables = []
# Add title
flowables.append(Paragraph("Daily Progress Report", title_style))
# Split DPR text into lines and add as paragraphs (excluding descriptions for images)
for line in dpr_text.split('\n'):
# Replace problematic characters for PDF
line = line.replace('\u2019', "'").replace('\u2018', "'")
if line.strip():
flowables.append(Paragraph(line, body_style))
else:
flowables.append(Spacer(1, 12))
# Add images and captions in the correct order (no need to add description to dpr_text again)
for img_path, caption in zip(image_paths, captions):
try:
# Add image first
img = PDFImage(img_path, width=200, height=150) # Adjust image size if needed
flowables.append(img)
# Add description below the image
description = f"Description: {caption}"
flowables.append(Paragraph(description, body_style))
flowables.append(Spacer(1, 12)) # Add some space between images
except Exception as e:
flowables.append(Paragraph(f"Error loading image: {str(e)}", body_style))
# Build the PDF
doc.build(flowables)
return f"PDF saved successfully as {filename}", filename
except Exception as e:
return f"Error saving PDF: {str(e)}", None
# Function to upload a file to Salesforce as ContentVersion
def upload_file_to_salesforce(file_path, filename, sf_connection, file_type):
try:
# Read file content and encode in base64
with open(file_path, 'rb') as f:
file_content = f.read()
file_content_b64 = base64.b64encode(file_content).decode('utf-8')
# Set description based on file type
description = "Daily Progress Report PDF" if file_type == "pdf" else "Site Image"
# Create ContentVersion
content_version = sf_connection.ContentVersion.create({
'Title': filename,
'PathOnClient': filename,
'VersionData': file_content_b64,
'Description': description
})
# Get ContentDocumentId
content_version_id = content_version['id']
content_document = sf_connection.query(
f"SELECT ContentDocumentId FROM ContentVersion WHERE Id = '{content_version_id}'"
)
content_document_id = content_document['records'][0]['ContentDocumentId']
# Generate a valid Salesforce URL for the ContentDocument
content_document_url = f"https://{sf_connection.sf_instance}/sfc/servlet.shepherd/version/download/{content_version_id}"
return content_document_id, content_document_url, f"File {filename} uploaded successfully"
except Exception as e:
return None, None, f"Error uploading {filename} to Salesforce: {str(e)}"
# Function to generate the daily progress report (DPR), save as PDF, and upload to Salesforce
def generate_dpr(files):
dpr_text = []
captions = []
image_paths = []
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
# Add header to the DPR
dpr_text.append(f"Daily Progress Report\nGenerated on: {current_time}\n")
# Process images in parallel for faster performance
with concurrent.futures.ThreadPoolExecutor() as executor:
results = list(executor.map(lambda file: generate_captions_from_image(Image.open(file.name)), files))
for i, file in enumerate(files):
caption = results[i]
captions.append(caption)
# Generate DPR section for this image with dynamic caption
dpr_section = f"\nImage: {file.name}\nDescription: {caption}\n"
dpr_text.append(dpr_section)
# Save image path for embedding in the report
image_paths.append(file.name)
# Combine DPR text
dpr_output = "\n".join(dpr_text)
# Generate PDF filename with timestamp
pdf_filename = f"DPR_{datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}.pdf"
# Save DPR text to PDF
pdf_result, pdf_filepath = save_dpr_to_pdf(dpr_output, image_paths, captions, pdf_filename)
if sf and pdf_filepath:
try:
# Create Daily_Progress_Reports__c record
report_description = "; ".join(captions)[:255] # Concatenate captions, limit to 255 chars
dpr_record = sf.Daily_Progress_Reports__c.create({
'Detected_Activities__c': report_description # Store in Detected_Activities__c field
})
dpr_record_id = dpr_record['id']
# Upload PDF to Salesforce
pdf_content_document_id, pdf_url, pdf_upload_result = upload_file_to_salesforce(
pdf_filepath, pdf_filename, sf, "pdf"
)
# Link PDF to DPR record
if pdf_content_document_id:
sf.ContentDocumentLink.create({
'ContentDocumentId': pdf_content_document_id,
'LinkedEntityId': dpr_record_id,
'ShareType': 'V'
})
# Update the DPR record with the PDF URL
if pdf_url:
sf.Daily_Progress_Reports__c.update(dpr_record_id, {
'PDF_URL__c': pdf_url # Storing the PDF URL correctly
})
# Upload images to Salesforce and link them to DPR record
for file in files:
image_filename = os.path.basename(file.name)
image_content_document_id, image_url, image_upload_result = upload_file_to_salesforce(
file.name, image_filename, sf, "image"
)
if image_content_document_id:
# Link image to the Daily Progress Report record (DPR) using ContentDocumentLink
sf.ContentDocumentLink.create({
'ContentDocumentId': image_content_document_id,
'LinkedEntityId': dpr_record_id, # Link image to DPR record
'ShareType': 'V' # 'V' means Viewer access
})
# Now, update the DPR record with the ContentDocumentId in the Site_Images field (if it's a text or URL field)
sf.Daily_Progress_Reports__c.update(dpr_record_id, {
'Site_Images__c': image_content_document_id # Storing the ContentDocumentId directly
})
except Exception as e:
pass # No output for Salesforce errors now
# Return the PDF file for Gradio download (using shutil to copy and return the file)
if pdf_filepath:
# Copy the PDF file to a temporary directory for Gradio to serve it
temp_pdf_path = "/tmp/" + os.path.basename(pdf_filepath)
shutil.copy(pdf_filepath, temp_pdf_path)
# Only return the DPR output and the PDF file path, excluding Salesforce upload details
return (
dpr_output + f"\n\n{pdf_result}", # Removed Salesforce upload status
temp_pdf_path # Returning the file path for download
)
else:
return (
dpr_output + f"\n\n{pdf_result}", # Removed Salesforce upload status
None
)
# Gradio interface for uploading multiple files, displaying DPR, and downloading PDF
iface = gr.Interface(
fn=generate_dpr,
inputs=gr.Files(type="filepath", label="Upload Site Photos"),
outputs=[
gr.Textbox(label="Daily Progress Report"),
gr.File(label="Download PDF", interactive=False)
],
title="Daily Progress Report Generator",
description="Upload up to 10 site photos. The AI model will generate a text-based Daily Progress Report (DPR), save it as a PDF, and upload the PDF and images to Salesforce under Daily_Progress_Reports__c in the Files related list. Download the PDF locally if needed.",
allow_flagging="never",
css="#gradio-share-link-button-0 { display: none !important; }"
)
if __name__ == "__main__":
iface.launch()
|