Spaces:
Build error
Build error
import pandas as pd | |
import numpy as np | |
from tqdm.auto import tqdm | |
import plotly.express as px | |
import plotly.graph_objects as go | |
import plotly.colors as pc | |
from scipy.stats import gaussian_kde | |
import numpy as np | |
import gradio as gr | |
from gradio_client import Client | |
from scipy.stats import gaussian_kde | |
import numpy as np | |
import os | |
import re | |
from translate import translate_pa_outcome, translate_pitch_outcome, jp_pitch_to_en_pitch, jp_pitch_to_pitch_code, translate_pitch_outcome, max_pitch_types | |
# load game data | |
game_df = pd.read_csv('game.csv').drop_duplicates() | |
assert len(game_df) == len(game_df['game_pk'].unique()) | |
# load pa data | |
pa_df = [] | |
for game_pk in tqdm(game_df['game_pk']): | |
pa_df.append(pd.read_csv(os.path.join('pa', f'{game_pk}.csv'), dtype={'pa_pk': str})) | |
pa_df = pd.concat(pa_df, axis='rows') | |
# load pitch data | |
pitch_df = [] | |
for game_pk in tqdm(game_df['game_pk']): | |
pitch_df.append(pd.read_csv(os.path.join('pitch', f'{game_pk}.csv'), dtype={'pa_pk': str})) | |
pitch_df = pd.concat(pitch_df, axis='rows') | |
pitch_df | |
# load player data | |
player_df = pd.read_csv('player.csv') | |
player_df | |
# translate pa data | |
pa_df['_des'] = pa_df['des'].str.strip() | |
pa_df['des'] = pa_df['des'].str.strip() | |
pa_df['des_more'] = pa_df['des_more'].str.strip() | |
pa_df.loc[pa_df['des'].isna(), 'des'] = pa_df[pa_df['des'].isna()]['des_more'] | |
pa_df.loc[:, 'des'] = pa_df['des'].apply(lambda item: item.split()[0] if (len(item.split()) > 1 and re.search(r'+\d+点', item)) else item) | |
non_home_plate_outcome = (pa_df['des'].isin(['ボール', '見逃し', '空振り'])) | (pa_df['des'].str.endswith('塁けん制')) | |
pa_df.loc[non_home_plate_outcome, 'des'] = pa_df.loc[non_home_plate_outcome, 'des_more'] | |
pa_df['des'] = pa_df['des'].apply(translate_pa_outcome) | |
# translate pitch data | |
pitch_df = pitch_df[~pitch_df['pitch_name'].isna()] | |
pitch_df['jp_pitch_name'] = pitch_df['pitch_name'] | |
pitch_df['pitch_name'] = pitch_df['jp_pitch_name'].apply(lambda pitch_name: jp_pitch_to_en_pitch[pitch_name]) | |
pitch_df['pitch_type'] = pitch_df['jp_pitch_name'].apply(lambda pitch_name: jp_pitch_to_pitch_code[pitch_name]) | |
pitch_df['description'] = pitch_df['description'].apply(lambda item: item.split()[0] if len(item.split()) > 1 else item) | |
pitch_df['description'] = pitch_df['description'].apply(translate_pitch_outcome) | |
pitch_df['release_speed'] = pitch_df['release_speed'].replace('-', np.nan) | |
pitch_df.loc[~pitch_df['release_speed'].isna(), 'release_speed'] = pitch_df.loc[~pitch_df['release_speed'].isna(), 'release_speed'].str.removesuffix('km/h').astype(int) | |
pitch_df['plate_x'] = (pitch_df['plate_x'] + 13) - 80 | |
pitch_df['plate_z'] = 200 - (pitch_df['plate_z'] + 13) - 100 | |
# translate player data | |
client = Client("Ramos-Ramos/npb_name_translator") | |
en_names = client.predict( | |
jp_names='\n'.join(player_df.name.tolist()), | |
api_name="/predict" | |
) | |
player_df['jp_name'] = player_df['name'] | |
player_df['name'] = [name if name != 'nan' else np.nan for name in en_names.splitlines()] | |
# merge pitch and pa data | |
df = pd.merge(pitch_df, pa_df, 'inner', on=['game_pk', 'pa_pk']) | |
df = pd.merge(df, player_df.rename(columns={'player_id': 'pitcher'}), 'inner', on='pitcher') | |
df['whiff'] = df['description'].isin(['SS', 'K']) | |
df['swing'] = ~df['description'].isin(['B', 'BB', 'LS', 'inv_K', 'bunt_K', 'HBP', 'SH', 'SH E', 'SH FC', 'obstruction', 'illegal_pitch', 'defensive_interference']) | |
df['csw'] = df['description'].isin(['SS', 'K', 'LS', 'inv_K']) | |
df['normal_pitch'] = ~df['description'].isin(['obstruction', 'illegal_pitch', 'defensive_interference']) # guess | |
# GRADIO FUNCTIONS | |
def fit_pred_kde(data, X, Y): | |
kde = gaussian_kde(data) | |
return kde(np.stack((X, Y)).reshape(2, -1)).reshape(*X.shape) | |
plot_s = 256 | |
sz_h = 200 | |
sz_w = 160 | |
h_h = 200 - 40*2 | |
h_w = 160 - 32*2 | |
kde_range = np.arange(-plot_s/2, plot_s/2, 1) | |
X, Y = np.meshgrid( | |
kde_range, | |
kde_range | |
) | |
def coordinatify(h, w): | |
return dict( | |
x0=-w/2, | |
y0=-h/2, | |
x1=w/2, | |
y1=h/2 | |
) | |
colorscale = pc.sequential.OrRd | |
colorscale = [ | |
[0, 'rgba(0, 0, 0, 0)'], | |
] + [ | |
[i / (len(colorscale) - 1), color] for i, color in enumerate(colorscale) | |
] | |
def plot_pitch_map(player, pitch_type=None, pitch_name=None): | |
assert not ((pitch_type is None and pitch_name is None) or (pitch_type is not None and pitch_name is not None)), 'exactly one of `pitch_type` or `pitch_name` must be specified' | |
pitch_val = pitch_type or pitch_name | |
pitch_col = 'pitch_type' if pitch_type else 'pitch_name' | |
loc = df.set_index(['name', pitch_col]).loc[(player, pitch_val), ['plate_x', 'plate_z']] | |
Z = fit_pred_kde(loc.to_numpy().T, X, Y) | |
fig = go.Figure() | |
fig.add_shape( | |
type="rect", | |
**coordinatify(sz_h, sz_w), | |
line_color='gray', | |
# fillcolor='rgba(220, 220, 220, 0.75)', #gainsboro | |
) | |
fig.add_shape( | |
type="rect", | |
**coordinatify(h_h, h_w), | |
line_color='dimgray', | |
) | |
fig.add_trace(go.Contour( | |
z=Z, | |
x=kde_range, | |
y=kde_range, | |
colorscale=colorscale, | |
zmin=1e-5, | |
zmax=Z.max(), | |
contours={ | |
'start': 1e-5, | |
'end': Z.max(), | |
'size': (Z.max() - 1e-5) / 5 | |
}, | |
showscale=False | |
)) | |
fig.update_layout( | |
xaxis=dict(range=[-plot_s/2, plot_s/2+1]), | |
yaxis=dict(range=[-plot_s/2, plot_s/2+1], scaleanchor='x', scaleratio=1), | |
width=384, | |
height=384 | |
) | |
return fig | |
def plot_empty_pitch_map(): | |
fig = go.Figure() | |
fig.add_annotation( | |
x=0, | |
y=0, | |
text='No visualization<br>as less than 10 pitches thrown', | |
showarrow=False | |
) | |
fig.update_layout( | |
xaxis=dict(range=[-plot_s/2, plot_s/2+1]), | |
yaxis=dict(range=[-plot_s/2, plot_s/2+1], scaleanchor='x', scaleratio=1), | |
width=384, | |
height=384 | |
) | |
return fig | |
def get_data(player): | |
player_name = f'# {player}' | |
usage_fig = px.pie(df.set_index('name').loc[player, 'pitch_name'], names='pitch_name') | |
usage_fig.update_traces(texttemplate='%{percent:.1%}', hovertemplate=f'<b>{player}</b><br>' + 'threw a <b>%{label}</b><br><b>%{percent:.1%}</b> of the time (<b>%{value}</b> pitches)') | |
pitch_counts = df.set_index('name').loc[player, 'pitch_name'].value_counts() | |
pitch_names = [] | |
pitch_infos = [] | |
pitch_maps = [] | |
whiff_rate = df.groupby(['name', 'pitch_name']) | |
whiff_rate = (whiff_rate['whiff'].sum() / whiff_rate['swing'].sum() * 100).round(1).reset_index().set_index('name').loc[player].set_index('pitch_name') | |
csw_rate = df.groupby(['name', 'pitch_name']) | |
csw_rate = (csw_rate['csw'].sum() / csw_rate['normal_pitch'].sum() * 100).round(1).reset_index().set_index('name').loc[player].set_index('pitch_name') | |
for pitch_name, count in pitch_counts.items(): | |
pitch_names.append(gr.update(value=f'### {pitch_name}', visible=True)) | |
pitch_infos.append(gr.update( | |
value=pd.DataFrame([{ | |
'Whiff%': whiff_rate.loc[pitch_name].item(), | |
'CSW%': csw_rate.loc[pitch_name].item() | |
}]), | |
# value=[ | |
# ('Whiff%', whiff_rate.loc[pitch_name].item()), | |
# ('CSW%', csw_rate.loc[pitch_name].item()) | |
# ], | |
visible=True | |
)) | |
if count > 10: | |
pitch_maps.append(gr.update(value=plot_pitch_map(player, pitch_name=pitch_name), label='Pitch location', elem_id=pitch_name, elem_classes=pitch_name, visible=True)) | |
else: | |
pitch_maps.append(gr.update(value=plot_empty_pitch_map(), label=pitch_name, visible=True)) | |
for _ in range(max_pitch_types - len(pitch_names)): | |
pitch_names.append(gr.update(value=None, visible=False)) | |
pitch_infos.append(gr.update(value=None, visible=False)) | |
for _ in range(max_pitch_types - len(pitch_maps)): | |
pitch_maps.append(gr.update(value=None, elem_id=None, elem_classes=None, visible=False)) | |
return player_name, usage_fig, *pitch_names, *pitch_infos, *pitch_maps | |