File size: 8,682 Bytes
410fd66
 
 
 
a6dea81
410fd66
573cc21
 
 
fcdc0cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc64286
 
 
 
 
 
 
 
 
 
 
 
fcdc0cf
 
 
bc64286
68390a5
573cc21
fcdc0cf
573cc21
fcdc0cf
45a579f
573cc21
fcdc0cf
573cc21
bc64286
 
 
a6dea81
 
 
 
 
 
 
 
 
 
573cc21
 
fcdc0cf
a6dea81
fcdc0cf
573cc21
fcdc0cf
 
 
 
 
 
573cc21
 
 
bc64286
fcdc0cf
 
d2ad93f
573cc21
 
 
 
 
 
 
 
432d77e
dd19451
fcdc0cf
 
 
 
a6dea81
 
573cc21
a6dea81
 
573cc21
 
fcdc0cf
a6dea81
432d77e
 
fcdc0cf
 
a6dea81
573cc21
 
bc64286
 
 
a6dea81
 
 
 
573cc21
410fd66
 
 
 
432d77e
 
 
 
 
a6dea81
 
 
410fd66
a6dea81
 
 
410fd66
a6dea81
 
 
 
410fd66
bc64286
 
 
 
 
 
 
a6dea81
 
 
 
410fd66
a6dea81
 
410fd66
a6dea81
 
410fd66
a6dea81
 
410fd66
a6dea81
 
 
 
 
 
410fd66
 
 
 
 
a937006
432d77e
 
 
 
 
 
 
 
 
a937006
410fd66
 
 
 
 
 
bc64286
410fd66
 
 
a6dea81
410fd66
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import gradio as gr
import librosa
import numpy as np
import os
import hashlib
from datetime import datetime
from transformers import pipeline
import soundfile as sf
import torch
from tenacity import retry, stop_after_attempt, wait_fixed

# Initialize local models with retry logic
@retry(stop=stop_after_attempt(3), wait=wait_fixed(2))
def load_whisper_model():
    try:
        model = pipeline(
            "automatic-speech-recognition",
            model="openai/whisper-tiny.en",
            device=-1,  # CPU; use device=0 for GPU if available
            model_kwargs={"use_safetensors": True}
        )
        print("Whisper model loaded successfully.")
        return model
    except Exception as e:
        print(f"Failed to load Whisper model: {str(e)}")
        raise

@retry(stop=stop_after_attempt(3), wait=wait_fixed(2))
def load_symptom_model():
    try:
        model = pipeline(
            "text-classification",
            model="abhirajeshbhai/symptom-2-disease-net",
            device=-1,  # CPU
            model_kwargs={"use_safetensors": True}
        )
        print("Symptom-2-Disease model loaded successfully.")
        return model
    except Exception as e:
        print(f"Failed to load Symptom-2-Disease model: {str(e)}")
        # Fallback to a generic model
        try:
            model = pipeline(
                "text-classification",
                model="distilbert-base-uncased",
                device=-1
            )
            print("Fallback to distilbert-base-uncased model.")
            return model
        except Exception as fallback_e:
            print(f"Fallback model failed: {str(fallback_e)}")
            raise

whisper = None
symptom_classifier = None
is_fallback_model = False

try:
    whisper = load_whisper_model()
except Exception as e:
    print(f"Whisper model initialization failed after retries: {str(e)}")

try:
    symptom_classifier = load_symptom_model()
except Exception as e:
    print(f"Symptom model initialization failed after retries: {str(e)}")
    symptom_classifier = None
    is_fallback_model = True  # Track if fallback model is used

def compute_file_hash(file_path):
    """Compute MD5 hash of a file to check uniqueness."""
    hash_md5 = hashlib.md5()
    with open(file_path, "rb") as f:
        for chunk in iter(lambda: f.read(4096), b""):
            hash_md5.update(chunk)
    return hash_md5.hexdigest()

def transcribe_audio(audio_file):
    """Transcribe audio using local Whisper model."""
    if not whisper:
        return "Error: Whisper model not loaded. Check logs for details or ensure sufficient compute resources."
    try:
        # Load and validate audio
        audio, sr = librosa.load(audio_file, sr=16000)
        if len(audio) < 1600:  # Less than 0.1s
            return "Error: Audio too short. Please provide audio of at least 1 second."
        if np.max(np.abs(audio)) < 1e-4:  # Too quiet
            return "Error: Audio too quiet. Please provide clear audio describing symptoms in English."
        
        # Save as WAV for Whisper
        temp_wav = f"/tmp/{os.path.basename(audio_file)}.wav"
        sf.write(temp_wav, audio, sr)
        
        # Transcribe with beam search
        with torch.no_grad():
            result = whisper(temp_wav, generate_kwargs={"num_beams": 5})
        transcription = result.get("text", "").strip()
        print(f"Transcription: {transcription}")
        
        # Clean up temp file
        try:
            os.remove(temp_wav)
        except Exception:
            pass
        
        if not transcription:
            return "Transcription empty. Please provide clear audio describing symptoms in English."
        # Check for repetitive transcription
        words = transcription.split()
        if len(words) > 5 and len(set(words)) < len(words) / 2:
            return "Error: Transcription appears repetitive. Please provide clear, non-repetitive audio describing symptoms."
        return transcription
    except Exception as e:
        return f"Error transcribing audio: {str(e)}"

def analyze_symptoms(text):
    """Analyze symptoms using local Symptom-2-Disease model."""
    if not symptom_classifier:
        return "Error: Symptom-2-Disease model not loaded. Check logs for details or ensure sufficient compute resources.", 0.0
    try:
        if not text or "Error transcribing" in text:
            return "No valid transcription for analysis.", 0.0
        with torch.no_grad():
            result = symptom_classifier(text)
        if result and isinstance(result, list) and len(result) > 0:
            prediction = result[0]["label"]
            score = result[0]["score"]
            if is_fallback_model:
                print("Warning: Using fallback model (distilbert-base-uncased). Results may be less accurate.")
                prediction = f"{prediction} (using fallback model)"
            print(f"Health Prediction: {prediction}, Score: {score:.4f}")
            return prediction, score
        return "No health condition predicted", 0.0
    except Exception as e:
        return f"Error analyzing symptoms: {str(e)}", 0.0

def analyze_voice(audio_file):
    """Analyze voice for health indicators."""
    try:
        # Ensure unique file name to avoid Gradio reuse
        unique_path = f"/tmp/gradio/{datetime.now().strftime('%Y%m%d%H%M%S%f')}_{os.path.basename(audio_file)}"
        os.rename(audio_file, unique_path)
        audio_file = unique_path
        
        # Log audio file info
        file_hash = compute_file_hash(audio_file)
        print(f"Processing audio file: {audio_file}, Hash: {file_hash}")
        
        # Load audio to verify format
        audio, sr = librosa.load(audio_file, sr=16000)
        print(f"Audio shape: {audio.shape}, Sampling rate: {sr}, Duration: {len(audio)/sr:.2f}s, Mean: {np.mean(audio):.4f}, Std: {np.std(audio):.4f}")
        
        # Transcribe audio
        transcription = transcribe_audio(audio_file)
        if "Error transcribing" in transcription:
            return transcription
        
        # Check for medication-related queries
        if "medicine" in transcription.lower() or "treatment" in transcription.lower():
            feedback = "Error: This tool does not provide medication or treatment advice. Please describe symptoms only (e.g., 'I have a fever')."
            feedback += f"\n\n**Debug Info**: Transcription = '{transcription}', File Hash = {file_hash}"
            feedback += "\n**Disclaimer**: This is not a diagnostic tool. Consult a healthcare provider for medical advice."
            return feedback
        
        # Analyze symptoms
        prediction, score = analyze_symptoms(transcription)
        if "Error analyzing" in prediction:
            return prediction
        
        # Generate feedback
        if prediction == "No health condition predicted":
            feedback = "No significant health indicators detected."
        else:
            feedback = f"Possible health condition: {prediction} (confidence: {score:.4f}). Consult a doctor."
        
        feedback += f"\n\n**Debug Info**: Transcription = '{transcription}', Prediction = {prediction}, Confidence = {score:.4f}, File Hash = {file_hash}"
        feedback += "\n**Disclaimer**: This is not a diagnostic tool. Consult a healthcare provider for medical advice."
        
        # Clean up temporary audio file
        try:
            os.remove(audio_file)
            print(f"Deleted temporary audio file: {audio_file}")
        except Exception as e:
            print(f"Failed to delete audio file: {str(e)}")
        
        return feedback
    except Exception as e:
        return f"Error processing audio: {str(e)}"

def test_with_sample_audio():
    """Test the app with sample audio files."""
    samples = ["audio_samples/sample.wav", "audio_samples/common_voice_en.wav"]
    results = []
    for sample in samples:
        if os.path.exists(sample):
            results.append(analyze_voice(sample))
        else:
            results.append(f"Sample not found: {sample}")
    return "\n".join(results)

# Gradio interface
iface = gr.Interface(
    fn=analyze_voice,
    inputs=gr.Audio(type="filepath", label="Record or Upload Voice"),
    outputs=gr.Textbox(label="Health Assessment Feedback"),
    title="Health Voice Analyzer",
    description="Record or upload a voice sample describing symptoms (e.g., 'I have a fever') for preliminary health assessment. Supports English only. Use clear audio (WAV, 16kHz). Do not ask for medication or treatment advice."
)

if __name__ == "__main__":
    print(test_with_sample_audio())
    iface.launch(server_name="0.0.0.0", server_port=7860)