|
import streamlit as st |
|
import numpy as np |
|
import cv2 |
|
import matplotlib.pyplot as plt |
|
|
|
|
|
|
|
|
|
|
|
def generate_colorful_image(height=256, width=256, p_blue=0.5): |
|
""" |
|
Generates a synthetic image (height x width) with: |
|
- 'p_blue' fraction of blueish pixels |
|
- (1 - p_blue) fraction of near-white/grey |
|
Includes near-blue shades for more realistic challenge. |
|
""" |
|
img = np.zeros((height, width, 3), dtype=np.uint8) |
|
for i in range(height): |
|
for j in range(width): |
|
if np.random.rand() < p_blue: |
|
|
|
b = np.random.randint(100, 256) |
|
g = np.random.randint(0, 121) |
|
r = np.random.randint(0, 121) |
|
if np.random.rand() < 0.3: |
|
g += np.random.randint(0, 30) |
|
r += np.random.randint(0, 30) |
|
b = min(b, 255) |
|
g = min(g, 255) |
|
r = min(r, 255) |
|
img[i, j] = [b, g, r] |
|
else: |
|
|
|
base = np.random.randint(180, 256) |
|
diff_r = np.random.randint(-20, 20) |
|
diff_g = np.random.randint(-20, 20) |
|
diff_b = np.random.randint(-20, 20) |
|
b = np.clip(base + diff_b, 0, 255) |
|
g = np.clip(base + diff_g, 0, 255) |
|
r = np.clip(base + diff_r, 0, 255) |
|
img[i, j] = [b, g, r] |
|
return img |
|
|
|
def simple_threshold_blue(image_bgr): |
|
""" |
|
Simple approach: |
|
1) Convert to HSV |
|
2) Single broad threshold for blue |
|
3) Count ratio of blue pixels |
|
""" |
|
hsv = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2HSV) |
|
|
|
lower_blue = np.array([90, 50, 50], dtype=np.uint8) |
|
upper_blue = np.array([130, 255, 255], dtype=np.uint8) |
|
mask = cv2.inRange(hsv, lower_blue, upper_blue) |
|
|
|
blue_pixels = cv2.countNonZero(mask) |
|
total_pixels = image_bgr.shape[0] * image_bgr.shape[1] |
|
perc_blue = (blue_pixels / total_pixels) * 100 |
|
return perc_blue, mask |
|
|
|
def advanced_threshold_blue(image_bgr): |
|
""" |
|
Advanced approach: |
|
1) Multiple color ranges for deep & light blues |
|
2) Morphological cleaning |
|
3) Count ratio of blue pixels |
|
""" |
|
hsv = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2HSV) |
|
|
|
|
|
lower_blue1 = np.array([90, 50, 50], dtype=np.uint8) |
|
upper_blue1 = np.array([130, 255, 255], dtype=np.uint8) |
|
mask1 = cv2.inRange(hsv, lower_blue1, upper_blue1) |
|
|
|
|
|
lower_blue2 = np.array([80, 30, 50], dtype=np.uint8) |
|
upper_blue2 = np.array([100, 255, 255], dtype=np.uint8) |
|
mask2 = cv2.inRange(hsv, lower_blue2, upper_blue2) |
|
|
|
combined_mask = cv2.bitwise_or(mask1, mask2) |
|
|
|
|
|
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3,3)) |
|
cleaned_mask = cv2.morphologyEx(combined_mask, cv2.MORPH_OPEN, kernel) |
|
cleaned_mask = cv2.morphologyEx(cleaned_mask, cv2.MORPH_CLOSE, kernel) |
|
|
|
blue_pixels = cv2.countNonZero(cleaned_mask) |
|
total_pixels = image_bgr.shape[0] * image_bgr.shape[1] |
|
perc_blue = (blue_pixels / total_pixels) * 100 |
|
return perc_blue, cleaned_mask |
|
|
|
def plot_color_histogram(image_bgr): |
|
""" |
|
Creates a matplotlib figure of B, G, and R channel histograms. |
|
""" |
|
color = ('b','g','r') |
|
fig, ax = plt.subplots(figsize=(4,3)) |
|
for i,col in enumerate(color): |
|
hist = cv2.calcHist([image_bgr],[i],None,[256],[0,256]) |
|
ax.plot(hist, color=col) |
|
ax.set_xlim([0,256]) |
|
ax.set_title("Color Channel Histogram") |
|
ax.set_xlabel("Pixel Intensity") |
|
ax.set_ylabel("Frequency") |
|
fig.tight_layout() |
|
return fig |
|
|
|
|
|
|
|
|
|
|
|
|
|
st.set_page_config(page_title="ITC PSPD - Blue Area Detection Demo", layout="centered") |
|
|
|
st.title("Color Detection Demo for ITC PSPD") |
|
st.markdown(""" |
|
**This assignment showcases an Industry 4.0 approach** to **color segmentation**, |
|
demonstrating how tools like Python, OpenCV, and Streamlit can automate **quality checks** |
|
(similar to checking the quality of paperboards, packaging prints, or other color-critical products). |
|
|
|
--- |
|
|
|
**Why It Matters for ITC PSPD**: |
|
- ITC Paperboards & Specialty Papers Division (PSPD) is a leader in paper, packaging, and specialty solutions. |
|
- Precise color detection ensures **consistent brand identity**, reduces **defects**, and aligns with ITC's |
|
**sustainability** and **innovation** ethos. |
|
|
|
Below, you can: |
|
1. **Generate** a synthetic image with random shades of **blue** and **near-white** regions. |
|
2. **Analyze** the image using both **Simple** and **Advanced** thresholding. |
|
3. **Visualize** color histograms and masks. |
|
4. See how this **digital transformation** approach can benefit large-scale production lines. |
|
|
|
--- |
|
""") |
|
|
|
st.sidebar.header("Generation Controls") |
|
p_blue = st.sidebar.slider("Fraction of Blue-ish Pixels", 0.0, 1.0, 0.5, 0.05) |
|
img_size = st.sidebar.selectbox("Image Size (px)", [128, 192, 256, 320], index=2) |
|
|
|
if "random_image" not in st.session_state: |
|
st.session_state["random_image"] = None |
|
|
|
st.sidebar.markdown("---") |
|
if st.sidebar.button("Generate New Random Image"): |
|
img_bgr = generate_colorful_image(height=img_size, width=img_size, p_blue=p_blue) |
|
st.session_state["random_image"] = img_bgr |
|
|
|
|
|
if st.session_state["random_image"] is None: |
|
st.warning("Use the sidebar to generate a new image.") |
|
else: |
|
st.subheader("1) Randomly Generated Image & Color Analysis") |
|
|
|
|
|
img_bgr = st.session_state["random_image"] |
|
img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB) |
|
|
|
col1, col2 = st.columns(2) |
|
with col1: |
|
st.image(img_rgb, caption="Synthesized Image (RGB)", width=250) |
|
|
|
with col2: |
|
|
|
hist_fig = plot_color_histogram(img_bgr) |
|
st.pyplot(hist_fig) |
|
|
|
st.markdown("---") |
|
|
|
|
|
st.subheader("2) Simple Threshold Approach") |
|
simple_perc_blue, simple_mask = simple_threshold_blue(img_bgr) |
|
|
|
col3, col4 = st.columns(2) |
|
with col3: |
|
st.write(f"**Blue Percentage (Simple):** {simple_perc_blue:.2f}%") |
|
st.progress(min(simple_perc_blue/100, 1.0)) |
|
with col4: |
|
st.image(simple_mask, caption="Simple Mask (white=detected blue)", width=250) |
|
|
|
st.markdown("---") |
|
|
|
|
|
st.subheader("3) Advanced Threshold Approach") |
|
adv_perc_blue, adv_mask = advanced_threshold_blue(img_bgr) |
|
|
|
col5, col6 = st.columns(2) |
|
with col5: |
|
st.write(f"**Blue Percentage (Advanced):** {adv_perc_blue:.2f}%") |
|
st.progress(min(adv_perc_blue/100, 1.0)) |
|
with col6: |
|
st.image(adv_mask, caption="Advanced Mask (white=detected blue)", width=250) |
|
|
|
st.markdown(""" |
|
--- |
|
## Relevance to ITC PSPD: |
|
- **Digital Quality Control**: A color detection system like this can **validate printed matter** (cartons, labels) in real time. |
|
- **Big Data Integration**: Results could be uploaded to a **data lake**, enabling historical trend analysis and continuous improvement. |
|
- **Sustainability**: **Accurate color checks** reduce material wastage, aligning with ITC’s triple bottom line (economic, social, environmental) philosophy. |
|
- **Industry 4.0**: Coupling this solution with **IoT** sensors, real-time dashboards, and advanced analytics ensures **agile and data-driven** paperboard manufacturing. |
|
|
|
## Made By: |
|
**Kaustubh Raykar** |
|
- +91 7020524609 |
|
- [[email protected]](mailto:[email protected]) |
|
- [[email protected]](mailto:[email protected]) |
|
|
|
--- |
|
|
|
**Thank you for exploring this demonstration!** |
|
""") |
|
|
|
|
|
|
|
|
|
st.header("How This Code Works") |
|
st.markdown(""" |
|
1. **Utility Functions** |
|
- **generate_colorful_image**: Creates a synthetic image with a customizable proportion of blue pixels. This simulates different real-world scenarios, such as varying amounts of a brand color on packaging. |
|
- **simple_threshold_blue**: Uses basic HSV thresholding to identify blue pixels. Provides a quick, broad detection method. |
|
- **advanced_threshold_blue**: Combines multiple ranges for different shades of blue and applies morphological operations for noise reduction, giving more robust results. |
|
- **plot_color_histogram**: Plots separate color channel (B, G, R) histograms to visualize the distribution of pixel intensities. |
|
|
|
2. **Streamlit Layout** |
|
- **Sidebar**: Controls to adjust the fraction of blueish pixels and the image size. A button to generate a new random image is also included. |
|
- **Main Page**: |
|
- Displays the generated image and its color histogram side by side. |
|
- Shows the simple vs. advanced detection masks with the calculated percentage of blue. |
|
- Progress bars indicate the proportion of blue visually. |
|
|
|
3. **Industry 4.0 Context** |
|
- By integrating this approach with IoT devices, large-scale manufacturing lines can automate color checks. The masks and percentage calculations serve as a foundation for real-time QA alerts, data logging, and future analytics. |
|
|
|
4. **Execution Flow** |
|
1. When the user clicks "Generate New Random Image," it calls `generate_colorful_image()` to create a fresh synthetic image. |
|
2. The image is converted to RGB for display. Meanwhile, `plot_color_histogram()` renders a histogram for deeper insight into color distribution. |
|
3. The **simple_threshold_blue** and **advanced_threshold_blue** functions each produce their own masks and calculations, displayed in the main interface. |
|
4. By comparing the results of both methods, users can see the differences in detection accuracy and how morphological operations can refine the result. |
|
|
|
This cohesive setup ensures a **user-friendly**, **real-time** demonstration of how color segmentation can be applied to industrial use cases—especially relevant for ITC PSPD's commitments to **quality** and **innovation**. |
|
""") |
|
|