|
import streamlit as st |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
|
|
|
|
|
|
|
|
|
|
def generate_random_pile(num_points=50, max_height=10.0, noise=0.5): |
|
""" |
|
Generates a random 'pile shape' with a certain maximum height. |
|
shape it as a bell-curve-like mound plus random noise. |
|
|
|
Args: |
|
num_points (int): Number of discrete x-points to model the silo cross-section. |
|
max_height (float): Approximate max possible height. |
|
noise (float): Random fluctuations around the main shape. |
|
|
|
Returns: |
|
x_array (np.array): X-coordinates from 0..1 (normalized). |
|
height_array (np.array): Random mound shape values at each x. |
|
""" |
|
x_array = np.linspace(0, 1, num_points) |
|
center = 0.5 |
|
sigma = 0.15 |
|
base_curve = max_height * np.exp(-0.5 * ((x_array - center) / sigma)**2) |
|
|
|
random_variation = noise * np.random.randn(num_points) |
|
height_array = np.clip(base_curve + random_variation, 0, None) |
|
return x_array, height_array |
|
|
|
def simulate_sensor_readings(x_array, height_array, sensor_type="LiDAR", num_sensors=5): |
|
""" |
|
Simulates sensor readings from the height array. |
|
randomly pick a few positions along x_array, |
|
then record the height + some noise depending on sensor_type. |
|
|
|
Args: |
|
x_array (np.array): X-coordinates for the silo cross-section |
|
height_array (np.array): True pile height at each x |
|
sensor_type (str): "LiDAR" or "Ultrasonic" - determines noise level |
|
num_sensors (int): number of sensors/points to read |
|
|
|
Returns: |
|
sensor_positions (np.array): Chosen positions |
|
sensor_heights (np.array): Measured heights (with noise) |
|
""" |
|
sensor_positions = np.random.choice(x_array, size=num_sensors, replace=False) |
|
sensor_positions = np.sort(sensor_positions) |
|
|
|
sensor_heights = [] |
|
for pos in sensor_positions: |
|
idx = np.argmin(np.abs(x_array - pos)) |
|
true_height = height_array[idx] |
|
|
|
if sensor_type.lower() == "lidar": |
|
noise_std = 0.1 |
|
else: |
|
noise_std = 0.2 |
|
|
|
measured = true_height + np.random.randn() * noise_std |
|
sensor_heights.append(max(measured, 0.0)) |
|
|
|
return sensor_positions, np.array(sensor_heights) |
|
|
|
def estimate_peak_height(sensor_positions, sensor_heights): |
|
""" |
|
Simple approach: take the max sensor reading as approximate peak. |
|
""" |
|
return np.max(sensor_heights) |
|
|
|
def estimate_volume(x_array, height_array, silo_width=5.0, silo_depth=5.0): |
|
""" |
|
Approximates volume of the pile using trapezoidal integration |
|
across the 2D cross-section, then multiplying by depth. |
|
|
|
Args: |
|
x_array: normalized x from 0..1 |
|
height_array: height at each x |
|
silo_width (float): actual width of silo in meters |
|
silo_depth (float): depth into the page in meters |
|
|
|
Returns: |
|
volume (float): approximate volume in cubic meters |
|
""" |
|
x_meters = x_array * silo_width |
|
area_2d = np.trapz(height_array, x_meters) |
|
volume = area_2d * silo_depth |
|
return volume |
|
|
|
def plot_pile_shape(x_array, height_array, sensor_positions=None, sensor_heights=None): |
|
""" |
|
Creates and returns a matplotlib figure showing |
|
the random pile shape and optionally sensor readings. |
|
""" |
|
fig, ax = plt.subplots(figsize=(5,3)) |
|
ax.plot(x_array, height_array, label='Pile Shape', linewidth=2, color='blue') |
|
|
|
if sensor_positions is not None and sensor_heights is not None: |
|
ax.scatter(sensor_positions, sensor_heights, color='red', |
|
label='Sensor Readings', s=50, zorder=5) |
|
|
|
ax.set_title("Silo Cross-Section (2D) - Wood Chip Pile") |
|
ax.set_xlabel("Normalized Silo Width (0..1)") |
|
ax.set_ylabel("Height (m)") |
|
ax.legend() |
|
fig.tight_layout() |
|
return fig |
|
|
|
def plot_sensor_bar(sensor_positions, sensor_heights): |
|
""" |
|
Creates and returns a bar chart showing sensor heights |
|
vs. sensor ID or position. |
|
""" |
|
fig, ax = plt.subplots(figsize=(4,3)) |
|
|
|
indices = np.arange(len(sensor_positions)) |
|
ax.bar(indices, sensor_heights, color='green') |
|
ax.set_title("Sensor Readings Bar Chart") |
|
ax.set_xlabel("Sensor Index") |
|
ax.set_ylabel("Measured Height (m)") |
|
ax.set_xticks(indices) |
|
ax.set_xticklabels([f"{pos:.2f}" for pos in sensor_positions], rotation=45) |
|
fig.tight_layout() |
|
return fig |
|
|
|
|
|
|
|
|
|
|
|
st.set_page_config(page_title="ITC PSPD - Wood Chip Silo Demo", layout="centered") |
|
|
|
st.title("Height Detection Of Wood Chips in Closed Silos - ITC PSPD Demo") |
|
|
|
st.markdown(""" |
|
Welcome to a simple demonstration of *Wood-chip silo height profile Detection and Volume Estimation*. |
|
This is an **Industry 4.0** inspired solution to **digitally** track the *height* and *volume* |
|
of wood chips in a silo, supporting **paperboard and specialty paper** operations at **ITC PSPD**. |
|
|
|
--- |
|
""") |
|
|
|
|
|
st.sidebar.header("Simulation Controls") |
|
|
|
sensor_type = st.sidebar.selectbox("Select Sensor Type:", ["LiDAR", "Ultrasonic"]) |
|
max_height = st.sidebar.slider("Max Potential Height (m):", 5.0, 30.0, 10.0, 1.0) |
|
noise_level = st.sidebar.slider("Random Noise Level:", 0.0, 3.0, 0.5, 0.1) |
|
num_points = st.sidebar.slider("Pile Resolution (Points):", 20, 200, 50, 10) |
|
num_sensors = st.sidebar.slider("Number of Sensors:", 1, 12, 5) |
|
silo_width = st.sidebar.slider("Silo Width (m):", 1.0, 20.0, 5.0, 1.0) |
|
silo_depth = st.sidebar.slider("Silo Depth (m):", 1.0, 20.0, 5.0, 1.0) |
|
|
|
|
|
if "x_array" not in st.session_state or "height_array" not in st.session_state: |
|
st.session_state["x_array"] = None |
|
st.session_state["height_array"] = None |
|
|
|
if st.sidebar.button("Generate New Random Pile"): |
|
x_array, height_array = generate_random_pile( |
|
num_points=num_points, |
|
max_height=max_height, |
|
noise=noise_level |
|
) |
|
st.session_state["x_array"] = x_array |
|
st.session_state["height_array"] = height_array |
|
|
|
|
|
if st.session_state["x_array"] is not None and st.session_state["height_array"] is not None: |
|
x_array = st.session_state["x_array"] |
|
height_array = st.session_state["height_array"] |
|
|
|
|
|
sensor_positions, sensor_heights = simulate_sensor_readings( |
|
x_array, height_array, sensor_type, num_sensors |
|
) |
|
|
|
|
|
approx_peak = estimate_peak_height(sensor_positions, sensor_heights) |
|
|
|
volume_est = estimate_volume(x_array, height_array, silo_width, silo_depth) |
|
|
|
st.subheader("1) Silo Cross-Section Visualization") |
|
fig_pile = plot_pile_shape(x_array, height_array, sensor_positions, sensor_heights) |
|
st.pyplot(fig_pile) |
|
|
|
|
|
col1, col2 = st.columns(2) |
|
with col1: |
|
st.markdown(f"**Approx Peak Height (from sensors):** `{approx_peak:.2f} m`") |
|
st.progress(min(approx_peak/max_height, 1.0)) |
|
with col2: |
|
st.markdown(f"**Estimated Volume:** `{volume_est:.2f} m³`") |
|
st.progress(min(volume_est/((max_height*silo_width*silo_depth)), 1.0)) |
|
|
|
st.subheader("2) Sensor Data Overview") |
|
|
|
col3, col4 = st.columns(2) |
|
with col3: |
|
|
|
fig_bars = plot_sensor_bar(sensor_positions, sensor_heights) |
|
st.pyplot(fig_bars) |
|
with col4: |
|
st.write("### Sensor Data Table") |
|
table_data = { |
|
"Position (norm)": [f"{pos:.2f}" for pos in sensor_positions], |
|
"Height (m)": [f"{h:.2f}" for h in sensor_heights] |
|
} |
|
st.table(table_data) |
|
|
|
st.markdown("---") |
|
|
|
st.markdown(""" |
|
### Interpretation & Industry 4.0 Connection |
|
|
|
- **Digital Twins**: This simulation mimics how a *digital twin* of the silo tracks |
|
wood-chip heights. The real system could have *LiDAR* sensors scanning |
|
or an array of *ultrasonic* sensors measuring the pile at intervals. |
|
- **Data-Driven Insights**: Automated volume estimation helps production planning, |
|
ensuring continuous supply for **paperboard** manufacturing while minimizing |
|
waste or silo overflow. |
|
- **ITC PSPD**: As a leading division in paper & packaging, adopting *Industry 4.0* |
|
solutions supports sustainability and operational efficiency—aligned with ITC’s |
|
triple bottom line. |
|
- **Big Data & AI**: If multiple silos or sites feed data into a cloud platform, |
|
advanced analytics/predictive models can optimize inventory or detect anomalies. |
|
|
|
--- |
|
""") |
|
else: |
|
st.info("Use the **sidebar** to generate a new random pile and view the results.") |
|
|
|
st.markdown(""" |
|
## Made By: |
|
- Name: Kaustubh Raykar |
|
- PRN: 21070126048 |
|
- Btech AIML 2021-25 |
|
- Contact: +91 7020524609 |
|
- Symbiosis Institute Of Technology, Pune |
|
- [email protected] |
|
- [email protected] |
|
|
|
**Thank you** for exploring this Wood Chip Silo Demo for **ITC PSPD**. |
|
""") |
|
|