Spaces:
Sleeping
Sleeping
File size: 4,483 Bytes
be3a2ca a928ae7 a244d5b bbe1084 a928ae7 bbe1084 be3a2ca a244d5b a928ae7 a244d5b 243eb87 bbe1084 a928ae7 a244d5b a928ae7 bbe1084 b2cfabe a244d5b b2cfabe bbe1084 b2cfabe a244d5b b2cfabe bbe1084 a928ae7 a244d5b b2cfabe bbe1084 a928ae7 bbe1084 a928ae7 bbe1084 a928ae7 b2cfabe bbe1084 a928ae7 bbe1084 a928ae7 b2cfabe bbe1084 b2cfabe a244d5b b2cfabe bbe1084 b2cfabe a244d5b b2cfabe a244d5b bbe1084 35c07dc a244d5b bbe1084 a928ae7 b2cfabe bbe1084 b2cfabe a244d5b a928ae7 bbe1084 4314dbc bbe1084 4314dbc bbe1084 a244d5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
from fastapi import FastAPI
import os
import fitz # pymupdf
from pptx import Presentation # PowerPoint
from sentence_transformers import SentenceTransformer # Text embeddings
import torch
from transformers import CLIPProcessor, CLIPModel # Image embeddings
from PIL import Image
import chromadb
import numpy as np
from sklearn.decomposition import PCA
app = FastAPI()
# Initialize ChromaDB
client = chromadb.PersistentClient(path="/data/chroma_db")
collection = client.get_or_create_collection(name="knowledge_base", metadata={"hnsw:space": "cosine"})
pdf_file = "Sutures and Suturing techniques.pdf"
pptx_file = "impalnt 1.pptx"
# Initialize models
text_model = SentenceTransformer('sentence-transformers/paraphrase-MiniLM-L3-v2') # 384-dim text model
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
IMAGE_FOLDER = "/data/extracted_images"
os.makedirs(IMAGE_FOLDER, exist_ok=True)
# Extract text from PDF
def extract_text_from_pdf(pdf_path):
return " ".join([page.get_text() for page in fitz.open(pdf_path)]).strip()
# Extract text from PowerPoint
def extract_text_from_pptx(pptx_path):
return " ".join([shape.text for slide in Presentation(pptx_path).slides for shape in slide.shapes if hasattr(shape, "text")]).strip()
# Extract images from PDF
def extract_images_from_pdf(pdf_path):
images = []
doc = fitz.open(pdf_path)
for i, page in enumerate(doc):
for img_index, img in enumerate(page.get_images(full=True)):
xref = img[0]
image = doc.extract_image(xref)
img_path = f"{IMAGE_FOLDER}/pdf_image_{i}_{img_index}.{image['ext']}"
with open(img_path, "wb") as f:
f.write(image["image"])
images.append(img_path)
return images
# Extract images from PowerPoint
def extract_images_from_pptx(pptx_path):
images = []
prs = Presentation(pptx_path)
for i, slide in enumerate(prs.slides):
for shape in slide.shapes:
if shape.shape_type == 13:
img_path = f"{IMAGE_FOLDER}/pptx_image_{i}.{shape.image.ext}"
with open(img_path, "wb") as f:
f.write(shape.image.blob)
images.append(img_path)
return images
# Convert text to embeddings
def get_text_embedding(text):
return text_model.encode(text).tolist() # 384-dim output
# Extract image embeddings
def get_image_embedding(image_path):
image = Image.open(image_path)
inputs = clip_processor(images=image, return_tensors="pt")
with torch.no_grad():
image_embedding = clip_model.get_image_features(**inputs).numpy().flatten() # 512-dim output
return image_embedding.tolist()
# Reduce image embedding dimensionality (512 → 384)
def reduce_embedding_dim(embeddings):
pca = PCA(n_components=384)
return pca.fit_transform(np.array(embeddings))
# Store Data in ChromaDB
def store_data(texts, image_paths):
for i, text in enumerate(texts):
collection.add(ids=[f"text_{i}"], embeddings=[get_text_embedding(text)], documents=[text])
if image_paths:
all_embeddings = np.array([get_image_embedding(img_path) for img_path in image_paths])
transformed_embeddings = reduce_embedding_dim(all_embeddings) if all_embeddings.shape[1] > 384 else all_embeddings
for j, img_path in enumerate(image_paths):
collection.add(ids=[f"image_{j}"], embeddings=[transformed_embeddings[j].tolist()], documents=[img_path])
print("Data stored successfully!")
# Process and store from files
def process_and_store(pdf_path=None, pptx_path=None):
texts, images = [], []
if pdf_path:
texts.append(extract_text_from_pdf(pdf_path))
images.extend(extract_images_from_pdf(pdf_path))
if pptx_path:
texts.append(extract_text_from_pptx(pptx_path))
images.extend(extract_images_from_pptx(pptx_path))
store_data(texts, images)
process_and_store(pdf_path=pdf_file, pptx_path=pptx_file)
@app.get("/")
def greet_json():
return {"Hello": "World!"}
@app.get("/test")
def greet_json():
return {"Hello": "Redmind!"}
@app.get("/search/")
def search(query: str):
query_embedding = get_text_embedding(query)
results = collection.query(query_embeddings=[query_embedding], n_results=5)
return {"results": results["documents"][0] if results["documents"] else []} # Fix empty results handling
|