File size: 4,483 Bytes
be3a2ca
a928ae7
a244d5b
bbe1084
a928ae7
 
 
 
 
bbe1084
 
be3a2ca
 
a244d5b
 
a928ae7
a244d5b
243eb87
bbe1084
 
a928ae7
 
a244d5b
 
 
a928ae7
 
 
bbe1084
 
b2cfabe
a244d5b
b2cfabe
bbe1084
b2cfabe
a244d5b
b2cfabe
bbe1084
a928ae7
 
a244d5b
b2cfabe
 
 
 
bbe1084
a928ae7
bbe1084
a928ae7
 
 
bbe1084
a928ae7
 
b2cfabe
 
 
bbe1084
 
a928ae7
bbe1084
a928ae7
 
b2cfabe
bbe1084
b2cfabe
a244d5b
b2cfabe
bbe1084
b2cfabe
 
a244d5b
b2cfabe
a244d5b
bbe1084
35c07dc
a244d5b
 
 
 
 
bbe1084
a928ae7
b2cfabe
bbe1084
b2cfabe
a244d5b
 
 
 
 
 
a928ae7
 
 
bbe1084
4314dbc
 
 
 
 
 
 
 
 
 
 
bbe1084
4314dbc
 
 
 
 
 
 
 
 
 
 
bbe1084
a244d5b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
from fastapi import FastAPI
import os
import fitz  # pymupdf
from pptx import Presentation  # PowerPoint
from sentence_transformers import SentenceTransformer  # Text embeddings
import torch
from transformers import CLIPProcessor, CLIPModel  # Image embeddings
from PIL import Image
import chromadb
import numpy as np
from sklearn.decomposition import PCA

app = FastAPI()

# Initialize ChromaDB
client = chromadb.PersistentClient(path="/data/chroma_db")
collection = client.get_or_create_collection(name="knowledge_base", metadata={"hnsw:space": "cosine"})

pdf_file = "Sutures and Suturing techniques.pdf"
pptx_file = "impalnt 1.pptx"

# Initialize models
text_model = SentenceTransformer('sentence-transformers/paraphrase-MiniLM-L3-v2')  # 384-dim text model
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")

IMAGE_FOLDER = "/data/extracted_images"
os.makedirs(IMAGE_FOLDER, exist_ok=True)

# Extract text from PDF
def extract_text_from_pdf(pdf_path):
    return " ".join([page.get_text() for page in fitz.open(pdf_path)]).strip()

# Extract text from PowerPoint
def extract_text_from_pptx(pptx_path):
    return " ".join([shape.text for slide in Presentation(pptx_path).slides for shape in slide.shapes if hasattr(shape, "text")]).strip()

# Extract images from PDF
def extract_images_from_pdf(pdf_path):
    images = []
    doc = fitz.open(pdf_path)
    for i, page in enumerate(doc):
        for img_index, img in enumerate(page.get_images(full=True)):
            xref = img[0]
            image = doc.extract_image(xref)
            img_path = f"{IMAGE_FOLDER}/pdf_image_{i}_{img_index}.{image['ext']}"
            with open(img_path, "wb") as f:
                f.write(image["image"])
            images.append(img_path)
    return images

# Extract images from PowerPoint
def extract_images_from_pptx(pptx_path):
    images = []
    prs = Presentation(pptx_path)
    for i, slide in enumerate(prs.slides):
        for shape in slide.shapes:
            if shape.shape_type == 13:
                img_path = f"{IMAGE_FOLDER}/pptx_image_{i}.{shape.image.ext}"
                with open(img_path, "wb") as f:
                    f.write(shape.image.blob)
                images.append(img_path)
    return images

# Convert text to embeddings
def get_text_embedding(text):
    return text_model.encode(text).tolist()  # 384-dim output

# Extract image embeddings
def get_image_embedding(image_path):
    image = Image.open(image_path)
    inputs = clip_processor(images=image, return_tensors="pt")
    with torch.no_grad():
        image_embedding = clip_model.get_image_features(**inputs).numpy().flatten()  # 512-dim output
    return image_embedding.tolist()

# Reduce image embedding dimensionality (512 → 384)
def reduce_embedding_dim(embeddings):
    pca = PCA(n_components=384)
    return pca.fit_transform(np.array(embeddings))

# Store Data in ChromaDB
def store_data(texts, image_paths):
    for i, text in enumerate(texts):
        collection.add(ids=[f"text_{i}"], embeddings=[get_text_embedding(text)], documents=[text])

    if image_paths:
        all_embeddings = np.array([get_image_embedding(img_path) for img_path in image_paths])
        transformed_embeddings = reduce_embedding_dim(all_embeddings) if all_embeddings.shape[1] > 384 else all_embeddings
        
        for j, img_path in enumerate(image_paths):
            collection.add(ids=[f"image_{j}"], embeddings=[transformed_embeddings[j].tolist()], documents=[img_path])

    print("Data stored successfully!")

# Process and store from files
def process_and_store(pdf_path=None, pptx_path=None):
    texts, images = [], []
    if pdf_path:
        texts.append(extract_text_from_pdf(pdf_path))
        images.extend(extract_images_from_pdf(pdf_path))
    if pptx_path:
        texts.append(extract_text_from_pptx(pptx_path))
        images.extend(extract_images_from_pptx(pptx_path))
    store_data(texts, images)

process_and_store(pdf_path=pdf_file, pptx_path=pptx_file)

@app.get("/")
def greet_json():
    return {"Hello": "World!"}

@app.get("/test")
def greet_json():
    return {"Hello": "Redmind!"}

@app.get("/search/")
def search(query: str):
    query_embedding = get_text_embedding(query)
    results = collection.query(query_embeddings=[query_embedding], n_results=5)
    return {"results": results["documents"][0] if results["documents"] else []}  # Fix empty results handling