File size: 4,274 Bytes
be3a2ca
a928ae7
f081ce4
bbe1084
a928ae7
 
 
 
 
bbe1084
 
be3a2ca
 
a928ae7
295e833
243eb87
bbe1084
 
a928ae7
 
dc33092
bbe1084
 
a928ae7
 
 
bbe1084
 
b2cfabe
bbe1084
a928ae7
b2cfabe
bbe1084
b2cfabe
bbe1084
b2cfabe
bbe1084
a928ae7
 
4077f41
b2cfabe
 
 
 
bbe1084
a928ae7
bbe1084
a928ae7
 
 
bbe1084
a928ae7
 
b2cfabe
 
 
bbe1084
 
a928ae7
bbe1084
a928ae7
 
b2cfabe
bbe1084
b2cfabe
a928ae7
b2cfabe
bbe1084
b2cfabe
 
35c07dc
b2cfabe
bbe1084
 
35c07dc
bbe1084
a928ae7
b2cfabe
bbe1084
b2cfabe
bbe1084
 
 
 
 
 
 
 
 
 
 
 
 
a928ae7
 
 
bbe1084
4314dbc
 
 
 
 
 
 
 
 
 
 
bbe1084
4314dbc
 
 
 
 
 
 
 
 
 
 
bbe1084
4314dbc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
from fastapi import FastAPI
import os
import pymupdf
from pptx import Presentation  # PowerPoint
from sentence_transformers import SentenceTransformer  # Text embeddings
import torch
from transformers import CLIPProcessor, CLIPModel  # Image embeddings
from PIL import Image
import chromadb
import numpy as np
from sklearn.decomposition import PCA

app = FastAPI()
client = chromadb.PersistentClient(path="/data/chroma_db")
collection = client.get_or_create_collection(name="knowledge_base")

pdf_file = "Sutures and Suturing techniques.pdf"
pptx_file = "impalnt 1.pptx"

# Initialize models
text_model = SentenceTransformer('all-MiniLM-L6-v2')
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")

IMAGE_FOLDER = "/data/extracted_images"
os.makedirs(IMAGE_FOLDER, exist_ok=True)

# Extract text from PDF
def extract_text_from_pdf(pdf_path):
    text = "".join([page.get_text() for page in pymupdf.open(pdf_path)])
    return text.strip()

# Extract text from PowerPoint
def extract_text_from_pptx(pptx_path):
    return "".join([shape.text for slide in Presentation(pptx_path).slides for shape in slide.shapes if hasattr(shape, "text")]).strip()

# Extract images from PDF
def extract_images_from_pdf(pdf_path):
    images = []
    doc = pymupdf.open(pdf_path)
    for i, page in enumerate(doc):
        for img_index, img in enumerate(page.get_images(full=True)):
            xref = img[0]
            image = doc.extract_image(xref)
            img_path = f"{IMAGE_FOLDER}/pdf_image_{i}_{img_index}.{image['ext']}"
            with open(img_path, "wb") as f:
                f.write(image["image"])
            images.append(img_path)
    return images

# Extract images from PowerPoint
def extract_images_from_pptx(pptx_path):
    images = []
    prs = Presentation(pptx_path)
    for i, slide in enumerate(prs.slides):
        for shape in slide.shapes:
            if shape.shape_type == 13:
                img_path = f"{IMAGE_FOLDER}/pptx_image_{i}.{shape.image.ext}"
                with open(img_path, "wb") as f:
                    f.write(shape.image.blob)
                images.append(img_path)
    return images

# Convert text to embeddings
def get_text_embedding(text):
    return text_model.encode(text).tolist()

# Extract image embeddings
def get_image_embedding(image_path):
    image = Image.open(image_path)
    inputs = processor(images=image, return_tensors="pt")
    with torch.no_grad():
        image_embedding = model.get_image_features(**inputs).numpy().flatten()
    return image_embedding.tolist()

# Store Data in ChromaDB
def store_data(texts, image_paths):
    for i, text in enumerate(texts):
        collection.add(ids=[f"text_{i}"], embeddings=[get_text_embedding(text)], documents=[text])

    # Collect image embeddings first
    all_embeddings = [get_image_embedding(img_path) for img_path in image_paths]
    all_embeddings = np.array(all_embeddings)
    
    # Apply PCA if enough images exist
    if all_embeddings.shape[0] >= 384:
        pca = PCA(n_components=384)
        transformed_embeddings = pca.fit_transform(all_embeddings)
    else:
        transformed_embeddings = all_embeddings  # Use original embeddings
    
    for j, img_path in enumerate(image_paths):
        collection.add(ids=[f"image_{j}"], embeddings=[transformed_embeddings[j].tolist()], documents=[img_path])

    print("Data stored successfully!")

# Process and store from files
def process_and_store(pdf_path=None, pptx_path=None):
    texts, images = [], []
    if pdf_path:
        texts.append(extract_text_from_pdf(pdf_path))
        images.extend(extract_images_from_pdf(pdf_path))
    if pptx_path:
        texts.append(extract_text_from_pptx(pptx_path))
        images.extend(extract_images_from_pptx(pptx_path))
    store_data(texts, images)

process_and_store(pdf_path=pdf_file, pptx_path=pptx_file)

@app.get("/")
def greet_json():
    return {"Hello": "World!"}

@app.get("/test")
def greet_json():
    return {"Hello": "Redmind!"}

@app.get("/search/")
def search(query: str):
    query_embedding = get_text_embedding(query)
    results = collection.query(query_embeddings=[query_embedding], n_results=5)
    return {"results": results["documents"]}