Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 The Genmo team and The HuggingFace Team. | |
# All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Any, Dict, Optional, Tuple | |
import torch | |
import torch.nn as nn | |
from ...configuration_utils import ConfigMixin, register_to_config | |
from ...loaders import PeftAdapterMixin | |
from ...loaders.single_file_model import FromOriginalModelMixin | |
from ...utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers | |
from ...utils.torch_utils import maybe_allow_in_graph | |
from ..attention import FeedForward | |
from ..attention_processor import MochiAttention, MochiAttnProcessor2_0 | |
from ..embeddings import MochiCombinedTimestepCaptionEmbedding, PatchEmbed | |
from ..modeling_outputs import Transformer2DModelOutput | |
from ..modeling_utils import ModelMixin | |
from ..normalization import AdaLayerNormContinuous, RMSNorm | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
class MochiModulatedRMSNorm(nn.Module): | |
def __init__(self, eps: float): | |
super().__init__() | |
self.eps = eps | |
self.norm = RMSNorm(0, eps, False) | |
def forward(self, hidden_states, scale=None): | |
hidden_states_dtype = hidden_states.dtype | |
hidden_states = hidden_states.to(torch.float32) | |
hidden_states = self.norm(hidden_states) | |
if scale is not None: | |
hidden_states = hidden_states * scale | |
hidden_states = hidden_states.to(hidden_states_dtype) | |
return hidden_states | |
class MochiLayerNormContinuous(nn.Module): | |
def __init__( | |
self, | |
embedding_dim: int, | |
conditioning_embedding_dim: int, | |
eps=1e-5, | |
bias=True, | |
): | |
super().__init__() | |
# AdaLN | |
self.silu = nn.SiLU() | |
self.linear_1 = nn.Linear(conditioning_embedding_dim, embedding_dim, bias=bias) | |
self.norm = MochiModulatedRMSNorm(eps=eps) | |
def forward( | |
self, | |
x: torch.Tensor, | |
conditioning_embedding: torch.Tensor, | |
) -> torch.Tensor: | |
input_dtype = x.dtype | |
# convert back to the original dtype in case `conditioning_embedding`` is upcasted to float32 (needed for hunyuanDiT) | |
scale = self.linear_1(self.silu(conditioning_embedding).to(x.dtype)) | |
x = self.norm(x, (1 + scale.unsqueeze(1).to(torch.float32))) | |
return x.to(input_dtype) | |
class MochiRMSNormZero(nn.Module): | |
r""" | |
Adaptive RMS Norm used in Mochi. | |
Parameters: | |
embedding_dim (`int`): The size of each embedding vector. | |
""" | |
def __init__( | |
self, embedding_dim: int, hidden_dim: int, eps: float = 1e-5, elementwise_affine: bool = False | |
) -> None: | |
super().__init__() | |
self.silu = nn.SiLU() | |
self.linear = nn.Linear(embedding_dim, hidden_dim) | |
self.norm = RMSNorm(0, eps, False) | |
def forward( | |
self, hidden_states: torch.Tensor, emb: torch.Tensor | |
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: | |
hidden_states_dtype = hidden_states.dtype | |
emb = self.linear(self.silu(emb)) | |
scale_msa, gate_msa, scale_mlp, gate_mlp = emb.chunk(4, dim=1) | |
hidden_states = self.norm(hidden_states.to(torch.float32)) * (1 + scale_msa[:, None].to(torch.float32)) | |
hidden_states = hidden_states.to(hidden_states_dtype) | |
return hidden_states, gate_msa, scale_mlp, gate_mlp | |
class MochiTransformerBlock(nn.Module): | |
r""" | |
Transformer block used in [Mochi](https://huggingface.co/genmo/mochi-1-preview). | |
Args: | |
dim (`int`): | |
The number of channels in the input and output. | |
num_attention_heads (`int`): | |
The number of heads to use for multi-head attention. | |
attention_head_dim (`int`): | |
The number of channels in each head. | |
qk_norm (`str`, defaults to `"rms_norm"`): | |
The normalization layer to use. | |
activation_fn (`str`, defaults to `"swiglu"`): | |
Activation function to use in feed-forward. | |
context_pre_only (`bool`, defaults to `False`): | |
Whether or not to process context-related conditions with additional layers. | |
eps (`float`, defaults to `1e-6`): | |
Epsilon value for normalization layers. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
num_attention_heads: int, | |
attention_head_dim: int, | |
pooled_projection_dim: int, | |
qk_norm: str = "rms_norm", | |
activation_fn: str = "swiglu", | |
context_pre_only: bool = False, | |
eps: float = 1e-6, | |
) -> None: | |
super().__init__() | |
self.context_pre_only = context_pre_only | |
self.ff_inner_dim = (4 * dim * 2) // 3 | |
self.ff_context_inner_dim = (4 * pooled_projection_dim * 2) // 3 | |
self.norm1 = MochiRMSNormZero(dim, 4 * dim, eps=eps, elementwise_affine=False) | |
if not context_pre_only: | |
self.norm1_context = MochiRMSNormZero(dim, 4 * pooled_projection_dim, eps=eps, elementwise_affine=False) | |
else: | |
self.norm1_context = MochiLayerNormContinuous( | |
embedding_dim=pooled_projection_dim, | |
conditioning_embedding_dim=dim, | |
eps=eps, | |
) | |
self.attn1 = MochiAttention( | |
query_dim=dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
bias=False, | |
added_kv_proj_dim=pooled_projection_dim, | |
added_proj_bias=False, | |
out_dim=dim, | |
out_context_dim=pooled_projection_dim, | |
context_pre_only=context_pre_only, | |
processor=MochiAttnProcessor2_0(), | |
eps=1e-5, | |
) | |
# TODO(aryan): norm_context layers are not needed when `context_pre_only` is True | |
self.norm2 = MochiModulatedRMSNorm(eps=eps) | |
self.norm2_context = MochiModulatedRMSNorm(eps=eps) if not self.context_pre_only else None | |
self.norm3 = MochiModulatedRMSNorm(eps) | |
self.norm3_context = MochiModulatedRMSNorm(eps=eps) if not self.context_pre_only else None | |
self.ff = FeedForward(dim, inner_dim=self.ff_inner_dim, activation_fn=activation_fn, bias=False) | |
self.ff_context = None | |
if not context_pre_only: | |
self.ff_context = FeedForward( | |
pooled_projection_dim, | |
inner_dim=self.ff_context_inner_dim, | |
activation_fn=activation_fn, | |
bias=False, | |
) | |
self.norm4 = MochiModulatedRMSNorm(eps=eps) | |
self.norm4_context = MochiModulatedRMSNorm(eps=eps) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
encoder_hidden_states: torch.Tensor, | |
temb: torch.Tensor, | |
encoder_attention_mask: torch.Tensor, | |
image_rotary_emb: Optional[torch.Tensor] = None, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
norm_hidden_states, gate_msa, scale_mlp, gate_mlp = self.norm1(hidden_states, temb) | |
if not self.context_pre_only: | |
norm_encoder_hidden_states, enc_gate_msa, enc_scale_mlp, enc_gate_mlp = self.norm1_context( | |
encoder_hidden_states, temb | |
) | |
else: | |
norm_encoder_hidden_states = self.norm1_context(encoder_hidden_states, temb) | |
attn_hidden_states, context_attn_hidden_states = self.attn1( | |
hidden_states=norm_hidden_states, | |
encoder_hidden_states=norm_encoder_hidden_states, | |
image_rotary_emb=image_rotary_emb, | |
attention_mask=encoder_attention_mask, | |
) | |
hidden_states = hidden_states + self.norm2(attn_hidden_states, torch.tanh(gate_msa).unsqueeze(1)) | |
norm_hidden_states = self.norm3(hidden_states, (1 + scale_mlp.unsqueeze(1).to(torch.float32))) | |
ff_output = self.ff(norm_hidden_states) | |
hidden_states = hidden_states + self.norm4(ff_output, torch.tanh(gate_mlp).unsqueeze(1)) | |
if not self.context_pre_only: | |
encoder_hidden_states = encoder_hidden_states + self.norm2_context( | |
context_attn_hidden_states, torch.tanh(enc_gate_msa).unsqueeze(1) | |
) | |
norm_encoder_hidden_states = self.norm3_context( | |
encoder_hidden_states, (1 + enc_scale_mlp.unsqueeze(1).to(torch.float32)) | |
) | |
context_ff_output = self.ff_context(norm_encoder_hidden_states) | |
encoder_hidden_states = encoder_hidden_states + self.norm4_context( | |
context_ff_output, torch.tanh(enc_gate_mlp).unsqueeze(1) | |
) | |
return hidden_states, encoder_hidden_states | |
class MochiRoPE(nn.Module): | |
r""" | |
RoPE implementation used in [Mochi](https://huggingface.co/genmo/mochi-1-preview). | |
Args: | |
base_height (`int`, defaults to `192`): | |
Base height used to compute interpolation scale for rotary positional embeddings. | |
base_width (`int`, defaults to `192`): | |
Base width used to compute interpolation scale for rotary positional embeddings. | |
""" | |
def __init__(self, base_height: int = 192, base_width: int = 192) -> None: | |
super().__init__() | |
self.target_area = base_height * base_width | |
def _centers(self, start, stop, num, device, dtype) -> torch.Tensor: | |
edges = torch.linspace(start, stop, num + 1, device=device, dtype=dtype) | |
return (edges[:-1] + edges[1:]) / 2 | |
def _get_positions( | |
self, | |
num_frames: int, | |
height: int, | |
width: int, | |
device: Optional[torch.device] = None, | |
dtype: Optional[torch.dtype] = None, | |
) -> torch.Tensor: | |
scale = (self.target_area / (height * width)) ** 0.5 | |
t = torch.arange(num_frames, device=device, dtype=dtype) | |
h = self._centers(-height * scale / 2, height * scale / 2, height, device, dtype) | |
w = self._centers(-width * scale / 2, width * scale / 2, width, device, dtype) | |
grid_t, grid_h, grid_w = torch.meshgrid(t, h, w, indexing="ij") | |
positions = torch.stack([grid_t, grid_h, grid_w], dim=-1).view(-1, 3) | |
return positions | |
def _create_rope(self, freqs: torch.Tensor, pos: torch.Tensor) -> torch.Tensor: | |
with torch.autocast(freqs.device.type, torch.float32): | |
# Always run ROPE freqs computation in FP32 | |
freqs = torch.einsum("nd,dhf->nhf", pos.to(torch.float32), freqs.to(torch.float32)) | |
freqs_cos = torch.cos(freqs) | |
freqs_sin = torch.sin(freqs) | |
return freqs_cos, freqs_sin | |
def forward( | |
self, | |
pos_frequencies: torch.Tensor, | |
num_frames: int, | |
height: int, | |
width: int, | |
device: Optional[torch.device] = None, | |
dtype: Optional[torch.dtype] = None, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
pos = self._get_positions(num_frames, height, width, device, dtype) | |
rope_cos, rope_sin = self._create_rope(pos_frequencies, pos) | |
return rope_cos, rope_sin | |
class MochiTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin): | |
r""" | |
A Transformer model for video-like data introduced in [Mochi](https://huggingface.co/genmo/mochi-1-preview). | |
Args: | |
patch_size (`int`, defaults to `2`): | |
The size of the patches to use in the patch embedding layer. | |
num_attention_heads (`int`, defaults to `24`): | |
The number of heads to use for multi-head attention. | |
attention_head_dim (`int`, defaults to `128`): | |
The number of channels in each head. | |
num_layers (`int`, defaults to `48`): | |
The number of layers of Transformer blocks to use. | |
in_channels (`int`, defaults to `12`): | |
The number of channels in the input. | |
out_channels (`int`, *optional*, defaults to `None`): | |
The number of channels in the output. | |
qk_norm (`str`, defaults to `"rms_norm"`): | |
The normalization layer to use. | |
text_embed_dim (`int`, defaults to `4096`): | |
Input dimension of text embeddings from the text encoder. | |
time_embed_dim (`int`, defaults to `256`): | |
Output dimension of timestep embeddings. | |
activation_fn (`str`, defaults to `"swiglu"`): | |
Activation function to use in feed-forward. | |
max_sequence_length (`int`, defaults to `256`): | |
The maximum sequence length of text embeddings supported. | |
""" | |
_supports_gradient_checkpointing = True | |
_no_split_modules = ["MochiTransformerBlock"] | |
def __init__( | |
self, | |
patch_size: int = 2, | |
num_attention_heads: int = 24, | |
attention_head_dim: int = 128, | |
num_layers: int = 48, | |
pooled_projection_dim: int = 1536, | |
in_channels: int = 12, | |
out_channels: Optional[int] = None, | |
qk_norm: str = "rms_norm", | |
text_embed_dim: int = 4096, | |
time_embed_dim: int = 256, | |
activation_fn: str = "swiglu", | |
max_sequence_length: int = 256, | |
) -> None: | |
super().__init__() | |
inner_dim = num_attention_heads * attention_head_dim | |
out_channels = out_channels or in_channels | |
self.patch_embed = PatchEmbed( | |
patch_size=patch_size, | |
in_channels=in_channels, | |
embed_dim=inner_dim, | |
pos_embed_type=None, | |
) | |
self.time_embed = MochiCombinedTimestepCaptionEmbedding( | |
embedding_dim=inner_dim, | |
pooled_projection_dim=pooled_projection_dim, | |
text_embed_dim=text_embed_dim, | |
time_embed_dim=time_embed_dim, | |
num_attention_heads=8, | |
) | |
self.pos_frequencies = nn.Parameter(torch.full((3, num_attention_heads, attention_head_dim // 2), 0.0)) | |
self.rope = MochiRoPE() | |
self.transformer_blocks = nn.ModuleList( | |
[ | |
MochiTransformerBlock( | |
dim=inner_dim, | |
num_attention_heads=num_attention_heads, | |
attention_head_dim=attention_head_dim, | |
pooled_projection_dim=pooled_projection_dim, | |
qk_norm=qk_norm, | |
activation_fn=activation_fn, | |
context_pre_only=i == num_layers - 1, | |
) | |
for i in range(num_layers) | |
] | |
) | |
self.norm_out = AdaLayerNormContinuous( | |
inner_dim, | |
inner_dim, | |
elementwise_affine=False, | |
eps=1e-6, | |
norm_type="layer_norm", | |
) | |
self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * out_channels) | |
self.gradient_checkpointing = False | |
def _set_gradient_checkpointing(self, module, value=False): | |
if hasattr(module, "gradient_checkpointing"): | |
module.gradient_checkpointing = value | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
encoder_hidden_states: torch.Tensor, | |
timestep: torch.LongTensor, | |
encoder_attention_mask: torch.Tensor, | |
attention_kwargs: Optional[Dict[str, Any]] = None, | |
return_dict: bool = True, | |
) -> torch.Tensor: | |
if attention_kwargs is not None: | |
attention_kwargs = attention_kwargs.copy() | |
lora_scale = attention_kwargs.pop("scale", 1.0) | |
else: | |
lora_scale = 1.0 | |
if USE_PEFT_BACKEND: | |
# weight the lora layers by setting `lora_scale` for each PEFT layer | |
scale_lora_layers(self, lora_scale) | |
else: | |
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None: | |
logger.warning( | |
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective." | |
) | |
batch_size, num_channels, num_frames, height, width = hidden_states.shape | |
p = self.config.patch_size | |
post_patch_height = height // p | |
post_patch_width = width // p | |
temb, encoder_hidden_states = self.time_embed( | |
timestep, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
hidden_dtype=hidden_states.dtype, | |
) | |
hidden_states = hidden_states.permute(0, 2, 1, 3, 4).flatten(0, 1) | |
hidden_states = self.patch_embed(hidden_states) | |
hidden_states = hidden_states.unflatten(0, (batch_size, -1)).flatten(1, 2) | |
image_rotary_emb = self.rope( | |
self.pos_frequencies, | |
num_frames, | |
post_patch_height, | |
post_patch_width, | |
device=hidden_states.device, | |
dtype=torch.float32, | |
) | |
for i, block in enumerate(self.transformer_blocks): | |
if torch.is_grad_enabled() and self.gradient_checkpointing: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs) | |
return custom_forward | |
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
hidden_states, encoder_hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(block), | |
hidden_states, | |
encoder_hidden_states, | |
temb, | |
encoder_attention_mask, | |
image_rotary_emb, | |
**ckpt_kwargs, | |
) | |
else: | |
hidden_states, encoder_hidden_states = block( | |
hidden_states=hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
temb=temb, | |
encoder_attention_mask=encoder_attention_mask, | |
image_rotary_emb=image_rotary_emb, | |
) | |
hidden_states = self.norm_out(hidden_states, temb) | |
hidden_states = self.proj_out(hidden_states) | |
hidden_states = hidden_states.reshape(batch_size, num_frames, post_patch_height, post_patch_width, p, p, -1) | |
hidden_states = hidden_states.permute(0, 6, 1, 2, 4, 3, 5) | |
output = hidden_states.reshape(batch_size, -1, num_frames, height, width) | |
if USE_PEFT_BACKEND: | |
# remove `lora_scale` from each PEFT layer | |
unscale_lora_layers(self, lora_scale) | |
if not return_dict: | |
return (output,) | |
return Transformer2DModelOutput(sample=output) | |