ICEdit / icedit /peft /utils /incremental_pca.py
RiverZ's picture
upd
3b609b9
# Copyright 2024-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, Tuple
import torch
class IncrementalPCA:
"""
An implementation of Incremental Principal Components Analysis (IPCA) that leverages PyTorch for GPU acceleration.
Adapted from https://github.com/scikit-learn/scikit-learn/blob/main/sklearn/decomposition/_incremental_pca.py
This class provides methods to fit the model on data incrementally in batches, and to transform new data based on
the principal components learned during the fitting process.
Args:
n_components (int, optional): Number of components to keep. If `None`, it's set to the minimum of the
number of samples and features. Defaults to None.
copy (bool): If False, input data will be overwritten. Defaults to True.
batch_size (int, optional): The number of samples to use for each batch. Only needed if self.fit is called.
If `None`, it's inferred from the data and set to `5 * n_features`. Defaults to None.
svd_driver (str, optional): name of the cuSOLVER method to be used for torch.linalg.svd. This keyword
argument only works on CUDA inputs. Available options are: None, gesvd, gesvdj, and gesvda. Defaults to
None.
lowrank (bool, optional): Whether to use torch.svd_lowrank instead of torch.linalg.svd which can be faster.
Defaults to False.
lowrank_q (int, optional): For an adequate approximation of n_components, this parameter defaults to
n_components * 2.
lowrank_niter (int, optional): Number of subspace iterations to conduct for torch.svd_lowrank.
Defaults to 4.
lowrank_seed (int, optional): Seed for making results of torch.svd_lowrank reproducible.
"""
def __init__(
self,
n_components: Optional[int] = None,
copy: Optional[bool] = True,
batch_size: Optional[int] = None,
svd_driver: Optional[str] = None,
lowrank: bool = False,
lowrank_q: Optional[int] = None,
lowrank_niter: int = 4,
lowrank_seed: Optional[int] = None,
):
self.n_components = n_components
self.copy = copy
self.batch_size = batch_size
self.svd_driver = svd_driver
self.lowrank = lowrank
self.lowrank_q = lowrank_q
self.lowrank_niter = lowrank_niter
self.lowrank_seed = lowrank_seed
self.n_features_ = None
if self.lowrank:
self._validate_lowrank_params()
def _validate_lowrank_params(self):
if self.lowrank_q is None:
if self.n_components is None:
raise ValueError("n_components must be specified when using lowrank mode with lowrank_q=None.")
self.lowrank_q = self.n_components * 2
elif self.lowrank_q < self.n_components:
raise ValueError("lowrank_q must be greater than or equal to n_components.")
def _svd_fn_full(self, X):
return torch.linalg.svd(X, full_matrices=False, driver=self.svd_driver)
def _svd_fn_lowrank(self, X):
seed_enabled = self.lowrank_seed is not None
with torch.random.fork_rng(enabled=seed_enabled):
if seed_enabled:
torch.manual_seed(self.lowrank_seed)
U, S, V = torch.svd_lowrank(X, q=self.lowrank_q, niter=self.lowrank_niter)
return U, S, V.mH
def _validate_data(self, X) -> torch.Tensor:
"""
Validates and converts the input data `X` to the appropriate tensor format.
Args:
X (torch.Tensor): Input data.
Returns:
torch.Tensor: Converted to appropriate format.
"""
valid_dtypes = [torch.float32, torch.float64]
if not isinstance(X, torch.Tensor):
X = torch.tensor(X, dtype=torch.float32)
elif self.copy:
X = X.clone()
n_samples, n_features = X.shape
if self.n_components is None:
pass
elif self.n_components > n_features:
raise ValueError(
f"n_components={self.n_components} invalid for n_features={n_features}, "
"need more rows than columns for IncrementalPCA processing."
)
elif self.n_components > n_samples:
raise ValueError(
f"n_components={self.n_components} must be less or equal to the batch number of samples {n_samples}"
)
if X.dtype not in valid_dtypes:
X = X.to(torch.float32)
return X
@staticmethod
def _incremental_mean_and_var(
X, last_mean, last_variance, last_sample_count
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Computes the incremental mean and variance for the data `X`.
Args:
X (torch.Tensor): The batch input data tensor with shape (n_samples, n_features).
last_mean (torch.Tensor): The previous mean tensor with shape (n_features,).
last_variance (torch.Tensor): The previous variance tensor with shape (n_features,).
last_sample_count (torch.Tensor): The count tensor of samples processed before the current batch.
Returns:
Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: Updated mean, variance tensors, and total sample count.
"""
if X.shape[0] == 0:
return last_mean, last_variance, last_sample_count
if last_sample_count > 0:
if last_mean is None:
raise ValueError("last_mean should not be None if last_sample_count > 0.")
if last_variance is None:
raise ValueError("last_variance should not be None if last_sample_count > 0.")
new_sample_count = torch.tensor([X.shape[0]], device=X.device)
updated_sample_count = last_sample_count + new_sample_count
if last_mean is None:
last_sum = torch.zeros(X.shape[1], dtype=torch.float64, device=X.device)
else:
last_sum = last_mean * last_sample_count
new_sum = X.sum(dim=0, dtype=torch.float64)
updated_mean = (last_sum + new_sum) / updated_sample_count
T = new_sum / new_sample_count
temp = X - T
correction = temp.sum(dim=0, dtype=torch.float64).square()
temp.square_()
new_unnormalized_variance = temp.sum(dim=0, dtype=torch.float64)
new_unnormalized_variance -= correction / new_sample_count
if last_variance is None:
updated_variance = new_unnormalized_variance / updated_sample_count
else:
last_unnormalized_variance = last_variance * last_sample_count
last_over_new_count = last_sample_count.double() / new_sample_count
updated_unnormalized_variance = (
last_unnormalized_variance
+ new_unnormalized_variance
+ last_over_new_count / updated_sample_count * (last_sum / last_over_new_count - new_sum).square()
)
updated_variance = updated_unnormalized_variance / updated_sample_count
return updated_mean, updated_variance, updated_sample_count
@staticmethod
def _svd_flip(u, v, u_based_decision=True) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Adjusts the signs of the singular vectors from the SVD decomposition for deterministic output.
This method ensures that the output remains consistent across different runs.
Args:
u (torch.Tensor): Left singular vectors tensor.
v (torch.Tensor): Right singular vectors tensor.
u_based_decision (bool, optional): If True, uses the left singular vectors to determine the sign flipping.
Defaults to True.
Returns:
Tuple[torch.Tensor, torch.Tensor]: Adjusted left and right singular vectors tensors.
"""
if u_based_decision:
max_abs_cols = torch.argmax(torch.abs(u), dim=0)
signs = torch.sign(u[max_abs_cols, range(u.shape[1])])
else:
max_abs_rows = torch.argmax(torch.abs(v), dim=1)
signs = torch.sign(v[range(v.shape[0]), max_abs_rows])
u *= signs[: u.shape[1]].view(1, -1)
v *= signs.view(-1, 1)
return u, v
def fit(self, X, check_input=True):
"""
Fits the model with data `X` using minibatches of size `batch_size`.
Args:
X (torch.Tensor): The input data tensor with shape (n_samples, n_features).
check_input (bool, optional): If True, validates the input. Defaults to True.
Returns:
IncrementalPCA: The fitted IPCA model.
"""
if check_input:
X = self._validate_data(X)
n_samples, n_features = X.shape
if self.batch_size is None:
self.batch_size = 5 * n_features
for batch in self.gen_batches(n_samples, self.batch_size, min_batch_size=self.n_components or 0):
self.partial_fit(X[batch], check_input=False)
return self
def partial_fit(self, X, check_input=True):
"""
Incrementally fits the model with batch data `X`.
Args:
X (torch.Tensor): The batch input data tensor with shape (n_samples, n_features).
check_input (bool, optional): If True, validates the input. Defaults to True.
Returns:
IncrementalPCA: The updated IPCA model after processing the batch.
"""
first_pass = not hasattr(self, "components_")
if check_input:
X = self._validate_data(X)
n_samples, n_features = X.shape
# Initialize attributes to avoid errors during the first call to partial_fit
if first_pass:
self.mean_ = None # Will be initialized properly in _incremental_mean_and_var based on data dimensions
self.var_ = None # Will be initialized properly in _incremental_mean_and_var based on data dimensions
self.n_samples_seen_ = torch.tensor([0], device=X.device)
self.n_features_ = n_features
if not self.n_components:
self.n_components = min(n_samples, n_features)
if n_features != self.n_features_:
raise ValueError(
"Number of features of the new batch does not match the number of features of the first batch."
)
col_mean, col_var, n_total_samples = self._incremental_mean_and_var(
X, self.mean_, self.var_, self.n_samples_seen_
)
if first_pass:
X -= col_mean
else:
col_batch_mean = torch.mean(X, dim=0)
X -= col_batch_mean
mean_correction_factor = torch.sqrt((self.n_samples_seen_.double() / n_total_samples) * n_samples)
mean_correction = mean_correction_factor * (self.mean_ - col_batch_mean)
X = torch.vstack(
(
self.singular_values_.view((-1, 1)) * self.components_,
X,
mean_correction,
)
)
if self.lowrank:
U, S, Vt = self._svd_fn_lowrank(X)
else:
U, S, Vt = self._svd_fn_full(X)
U, Vt = self._svd_flip(U, Vt, u_based_decision=False)
explained_variance = S**2 / (n_total_samples - 1)
explained_variance_ratio = S**2 / torch.sum(col_var * n_total_samples)
self.n_samples_seen_ = n_total_samples
self.components_ = Vt[: self.n_components]
self.singular_values_ = S[: self.n_components]
self.mean_ = col_mean
self.var_ = col_var
self.explained_variance_ = explained_variance[: self.n_components]
self.explained_variance_ratio_ = explained_variance_ratio[: self.n_components]
if self.n_components not in (n_samples, n_features):
self.noise_variance_ = explained_variance[self.n_components :].mean()
else:
self.noise_variance_ = torch.tensor(0.0, device=X.device)
return self
def transform(self, X) -> torch.Tensor:
"""
Applies dimensionality reduction to `X`.
The input data `X` is projected on the first principal components previously extracted from a training set.
Args:
X (torch.Tensor): New data tensor with shape (n_samples, n_features) to be transformed.
Returns:
torch.Tensor: Transformed data tensor with shape (n_samples, n_components).
"""
X = X - self.mean_
return torch.mm(X.double(), self.components_.T).to(X.dtype)
@staticmethod
def gen_batches(n: int, batch_size: int, min_batch_size: int = 0):
"""Generator to create slices containing `batch_size` elements from 0 to `n`.
The last slice may contain less than `batch_size` elements, when `batch_size` does not divide `n`.
Args:
n (int): Size of the sequence.
batch_size (int): Number of elements in each batch.
min_batch_size (int, optional): Minimum number of elements in each batch. Defaults to 0.
Yields:
slice: A slice of `batch_size` elements.
"""
start = 0
for _ in range(int(n // batch_size)):
end = start + batch_size
if end + min_batch_size > n:
continue
yield slice(start, end)
start = end
if start < n:
yield slice(start, n)