Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024-present the HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Optional, Tuple | |
import torch | |
class IncrementalPCA: | |
""" | |
An implementation of Incremental Principal Components Analysis (IPCA) that leverages PyTorch for GPU acceleration. | |
Adapted from https://github.com/scikit-learn/scikit-learn/blob/main/sklearn/decomposition/_incremental_pca.py | |
This class provides methods to fit the model on data incrementally in batches, and to transform new data based on | |
the principal components learned during the fitting process. | |
Args: | |
n_components (int, optional): Number of components to keep. If `None`, it's set to the minimum of the | |
number of samples and features. Defaults to None. | |
copy (bool): If False, input data will be overwritten. Defaults to True. | |
batch_size (int, optional): The number of samples to use for each batch. Only needed if self.fit is called. | |
If `None`, it's inferred from the data and set to `5 * n_features`. Defaults to None. | |
svd_driver (str, optional): name of the cuSOLVER method to be used for torch.linalg.svd. This keyword | |
argument only works on CUDA inputs. Available options are: None, gesvd, gesvdj, and gesvda. Defaults to | |
None. | |
lowrank (bool, optional): Whether to use torch.svd_lowrank instead of torch.linalg.svd which can be faster. | |
Defaults to False. | |
lowrank_q (int, optional): For an adequate approximation of n_components, this parameter defaults to | |
n_components * 2. | |
lowrank_niter (int, optional): Number of subspace iterations to conduct for torch.svd_lowrank. | |
Defaults to 4. | |
lowrank_seed (int, optional): Seed for making results of torch.svd_lowrank reproducible. | |
""" | |
def __init__( | |
self, | |
n_components: Optional[int] = None, | |
copy: Optional[bool] = True, | |
batch_size: Optional[int] = None, | |
svd_driver: Optional[str] = None, | |
lowrank: bool = False, | |
lowrank_q: Optional[int] = None, | |
lowrank_niter: int = 4, | |
lowrank_seed: Optional[int] = None, | |
): | |
self.n_components = n_components | |
self.copy = copy | |
self.batch_size = batch_size | |
self.svd_driver = svd_driver | |
self.lowrank = lowrank | |
self.lowrank_q = lowrank_q | |
self.lowrank_niter = lowrank_niter | |
self.lowrank_seed = lowrank_seed | |
self.n_features_ = None | |
if self.lowrank: | |
self._validate_lowrank_params() | |
def _validate_lowrank_params(self): | |
if self.lowrank_q is None: | |
if self.n_components is None: | |
raise ValueError("n_components must be specified when using lowrank mode with lowrank_q=None.") | |
self.lowrank_q = self.n_components * 2 | |
elif self.lowrank_q < self.n_components: | |
raise ValueError("lowrank_q must be greater than or equal to n_components.") | |
def _svd_fn_full(self, X): | |
return torch.linalg.svd(X, full_matrices=False, driver=self.svd_driver) | |
def _svd_fn_lowrank(self, X): | |
seed_enabled = self.lowrank_seed is not None | |
with torch.random.fork_rng(enabled=seed_enabled): | |
if seed_enabled: | |
torch.manual_seed(self.lowrank_seed) | |
U, S, V = torch.svd_lowrank(X, q=self.lowrank_q, niter=self.lowrank_niter) | |
return U, S, V.mH | |
def _validate_data(self, X) -> torch.Tensor: | |
""" | |
Validates and converts the input data `X` to the appropriate tensor format. | |
Args: | |
X (torch.Tensor): Input data. | |
Returns: | |
torch.Tensor: Converted to appropriate format. | |
""" | |
valid_dtypes = [torch.float32, torch.float64] | |
if not isinstance(X, torch.Tensor): | |
X = torch.tensor(X, dtype=torch.float32) | |
elif self.copy: | |
X = X.clone() | |
n_samples, n_features = X.shape | |
if self.n_components is None: | |
pass | |
elif self.n_components > n_features: | |
raise ValueError( | |
f"n_components={self.n_components} invalid for n_features={n_features}, " | |
"need more rows than columns for IncrementalPCA processing." | |
) | |
elif self.n_components > n_samples: | |
raise ValueError( | |
f"n_components={self.n_components} must be less or equal to the batch number of samples {n_samples}" | |
) | |
if X.dtype not in valid_dtypes: | |
X = X.to(torch.float32) | |
return X | |
def _incremental_mean_and_var( | |
X, last_mean, last_variance, last_sample_count | |
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
""" | |
Computes the incremental mean and variance for the data `X`. | |
Args: | |
X (torch.Tensor): The batch input data tensor with shape (n_samples, n_features). | |
last_mean (torch.Tensor): The previous mean tensor with shape (n_features,). | |
last_variance (torch.Tensor): The previous variance tensor with shape (n_features,). | |
last_sample_count (torch.Tensor): The count tensor of samples processed before the current batch. | |
Returns: | |
Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: Updated mean, variance tensors, and total sample count. | |
""" | |
if X.shape[0] == 0: | |
return last_mean, last_variance, last_sample_count | |
if last_sample_count > 0: | |
if last_mean is None: | |
raise ValueError("last_mean should not be None if last_sample_count > 0.") | |
if last_variance is None: | |
raise ValueError("last_variance should not be None if last_sample_count > 0.") | |
new_sample_count = torch.tensor([X.shape[0]], device=X.device) | |
updated_sample_count = last_sample_count + new_sample_count | |
if last_mean is None: | |
last_sum = torch.zeros(X.shape[1], dtype=torch.float64, device=X.device) | |
else: | |
last_sum = last_mean * last_sample_count | |
new_sum = X.sum(dim=0, dtype=torch.float64) | |
updated_mean = (last_sum + new_sum) / updated_sample_count | |
T = new_sum / new_sample_count | |
temp = X - T | |
correction = temp.sum(dim=0, dtype=torch.float64).square() | |
temp.square_() | |
new_unnormalized_variance = temp.sum(dim=0, dtype=torch.float64) | |
new_unnormalized_variance -= correction / new_sample_count | |
if last_variance is None: | |
updated_variance = new_unnormalized_variance / updated_sample_count | |
else: | |
last_unnormalized_variance = last_variance * last_sample_count | |
last_over_new_count = last_sample_count.double() / new_sample_count | |
updated_unnormalized_variance = ( | |
last_unnormalized_variance | |
+ new_unnormalized_variance | |
+ last_over_new_count / updated_sample_count * (last_sum / last_over_new_count - new_sum).square() | |
) | |
updated_variance = updated_unnormalized_variance / updated_sample_count | |
return updated_mean, updated_variance, updated_sample_count | |
def _svd_flip(u, v, u_based_decision=True) -> Tuple[torch.Tensor, torch.Tensor]: | |
""" | |
Adjusts the signs of the singular vectors from the SVD decomposition for deterministic output. | |
This method ensures that the output remains consistent across different runs. | |
Args: | |
u (torch.Tensor): Left singular vectors tensor. | |
v (torch.Tensor): Right singular vectors tensor. | |
u_based_decision (bool, optional): If True, uses the left singular vectors to determine the sign flipping. | |
Defaults to True. | |
Returns: | |
Tuple[torch.Tensor, torch.Tensor]: Adjusted left and right singular vectors tensors. | |
""" | |
if u_based_decision: | |
max_abs_cols = torch.argmax(torch.abs(u), dim=0) | |
signs = torch.sign(u[max_abs_cols, range(u.shape[1])]) | |
else: | |
max_abs_rows = torch.argmax(torch.abs(v), dim=1) | |
signs = torch.sign(v[range(v.shape[0]), max_abs_rows]) | |
u *= signs[: u.shape[1]].view(1, -1) | |
v *= signs.view(-1, 1) | |
return u, v | |
def fit(self, X, check_input=True): | |
""" | |
Fits the model with data `X` using minibatches of size `batch_size`. | |
Args: | |
X (torch.Tensor): The input data tensor with shape (n_samples, n_features). | |
check_input (bool, optional): If True, validates the input. Defaults to True. | |
Returns: | |
IncrementalPCA: The fitted IPCA model. | |
""" | |
if check_input: | |
X = self._validate_data(X) | |
n_samples, n_features = X.shape | |
if self.batch_size is None: | |
self.batch_size = 5 * n_features | |
for batch in self.gen_batches(n_samples, self.batch_size, min_batch_size=self.n_components or 0): | |
self.partial_fit(X[batch], check_input=False) | |
return self | |
def partial_fit(self, X, check_input=True): | |
""" | |
Incrementally fits the model with batch data `X`. | |
Args: | |
X (torch.Tensor): The batch input data tensor with shape (n_samples, n_features). | |
check_input (bool, optional): If True, validates the input. Defaults to True. | |
Returns: | |
IncrementalPCA: The updated IPCA model after processing the batch. | |
""" | |
first_pass = not hasattr(self, "components_") | |
if check_input: | |
X = self._validate_data(X) | |
n_samples, n_features = X.shape | |
# Initialize attributes to avoid errors during the first call to partial_fit | |
if first_pass: | |
self.mean_ = None # Will be initialized properly in _incremental_mean_and_var based on data dimensions | |
self.var_ = None # Will be initialized properly in _incremental_mean_and_var based on data dimensions | |
self.n_samples_seen_ = torch.tensor([0], device=X.device) | |
self.n_features_ = n_features | |
if not self.n_components: | |
self.n_components = min(n_samples, n_features) | |
if n_features != self.n_features_: | |
raise ValueError( | |
"Number of features of the new batch does not match the number of features of the first batch." | |
) | |
col_mean, col_var, n_total_samples = self._incremental_mean_and_var( | |
X, self.mean_, self.var_, self.n_samples_seen_ | |
) | |
if first_pass: | |
X -= col_mean | |
else: | |
col_batch_mean = torch.mean(X, dim=0) | |
X -= col_batch_mean | |
mean_correction_factor = torch.sqrt((self.n_samples_seen_.double() / n_total_samples) * n_samples) | |
mean_correction = mean_correction_factor * (self.mean_ - col_batch_mean) | |
X = torch.vstack( | |
( | |
self.singular_values_.view((-1, 1)) * self.components_, | |
X, | |
mean_correction, | |
) | |
) | |
if self.lowrank: | |
U, S, Vt = self._svd_fn_lowrank(X) | |
else: | |
U, S, Vt = self._svd_fn_full(X) | |
U, Vt = self._svd_flip(U, Vt, u_based_decision=False) | |
explained_variance = S**2 / (n_total_samples - 1) | |
explained_variance_ratio = S**2 / torch.sum(col_var * n_total_samples) | |
self.n_samples_seen_ = n_total_samples | |
self.components_ = Vt[: self.n_components] | |
self.singular_values_ = S[: self.n_components] | |
self.mean_ = col_mean | |
self.var_ = col_var | |
self.explained_variance_ = explained_variance[: self.n_components] | |
self.explained_variance_ratio_ = explained_variance_ratio[: self.n_components] | |
if self.n_components not in (n_samples, n_features): | |
self.noise_variance_ = explained_variance[self.n_components :].mean() | |
else: | |
self.noise_variance_ = torch.tensor(0.0, device=X.device) | |
return self | |
def transform(self, X) -> torch.Tensor: | |
""" | |
Applies dimensionality reduction to `X`. | |
The input data `X` is projected on the first principal components previously extracted from a training set. | |
Args: | |
X (torch.Tensor): New data tensor with shape (n_samples, n_features) to be transformed. | |
Returns: | |
torch.Tensor: Transformed data tensor with shape (n_samples, n_components). | |
""" | |
X = X - self.mean_ | |
return torch.mm(X.double(), self.components_.T).to(X.dtype) | |
def gen_batches(n: int, batch_size: int, min_batch_size: int = 0): | |
"""Generator to create slices containing `batch_size` elements from 0 to `n`. | |
The last slice may contain less than `batch_size` elements, when `batch_size` does not divide `n`. | |
Args: | |
n (int): Size of the sequence. | |
batch_size (int): Number of elements in each batch. | |
min_batch_size (int, optional): Minimum number of elements in each batch. Defaults to 0. | |
Yields: | |
slice: A slice of `batch_size` elements. | |
""" | |
start = 0 | |
for _ in range(int(n // batch_size)): | |
end = start + batch_size | |
if end + min_batch_size > n: | |
continue | |
yield slice(start, end) | |
start = end | |
if start < n: | |
yield slice(start, n) | |