Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
import plotly.express as px | |
import seaborn as sns | |
from sklearn.ensemble import RandomForestClassifier | |
from xgboost import XGBClassifier | |
from sklearn.tree import DecisionTreeClassifier | |
from sklearn.model_selection import train_test_split | |
import numpy as np | |
# Function to process data and return feature importances and correlation matrix | |
def calculate_importances(file): | |
# Read uploaded file | |
heart_df = pd.read_csv(file) | |
# Set X and y | |
X = heart_df.drop('target', axis=1) | |
y = heart_df['target'] | |
# Split the data | |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42) | |
# Initialize models | |
rf_model = RandomForestClassifier(random_state=42) | |
xgb_model = XGBClassifier(use_label_encoder=False, eval_metric='logloss', random_state=42) | |
cart_model = DecisionTreeClassifier(random_state=42) | |
# Train models | |
rf_model.fit(X_train, y_train) | |
xgb_model.fit(X_train, y_train) | |
cart_model.fit(X_train, y_train) | |
# Get feature importances | |
rf_importances = rf_model.feature_importances_ | |
xgb_importances = xgb_model.feature_importances_ | |
cart_importances = cart_model.feature_importances_ | |
feature_names = X.columns | |
# Prepare DataFrame | |
rf_importance = pd.DataFrame({'Feature': feature_names, 'Importance': rf_importances}) | |
xgb_importance = pd.DataFrame({'Feature': feature_names, 'Importance': xgb_importances}) | |
cart_importance = pd.DataFrame({'Feature': feature_names, 'Importance': cart_importances}) | |
# Correlation Matrix | |
corr_matrix = heart_df.corr() | |
return rf_importance, xgb_importance, cart_importance, corr_matrix | |
# Streamlit interface | |
st.title("Feature Importance Calculation") | |
# File upload | |
uploaded_file = st.file_uploader("Upload heart.csv file", type=['csv']) | |
if uploaded_file is not None: | |
# Process the file and get results | |
rf_importance, xgb_importance, cart_importance, corr_matrix = calculate_importances(uploaded_file) | |
# Display the correlation matrix as a heatmap (static for now) | |
st.write("Correlation Matrix:") | |
plt.figure(figsize=(10, 8)) | |
sns.heatmap(corr_matrix, annot=True, fmt=".2f", cmap="coolwarm", cbar=True) | |
st.pyplot(plt) | |
# Plot and display Random Forest Feature Importances with Plotly | |
st.write("Random Forest Feature Importance:") | |
fig_rf = px.bar(rf_importance, x='Importance', y='Feature', orientation='h', title="Random Forest Feature Importances") | |
st.plotly_chart(fig_rf) | |
# Plot and display XGBoost Feature Importances with Plotly | |
st.write("XGBoost Feature Importance:") | |
fig_xgb = px.bar(xgb_importance, x='Importance', y='Feature', orientation='h', title="XGBoost Feature Importances") | |
st.plotly_chart(fig_xgb) | |
# Plot and display CART (Decision Tree) Feature Importances with Plotly | |
st.write("CART (Decision Tree) Feature Importance:") | |
fig_cart = px.bar(cart_importance, x='Importance', y='Feature', orientation='h', title="CART (Decision Tree) Feature Importances") | |
st.plotly_chart(fig_cart) | |