Spaces:
Sleeping
Sleeping
File size: 6,323 Bytes
1ccf8ee c48497c 4fb4636 56dc0d1 1ccf8ee c48497c 1ccf8ee c48497c 4fb4636 49be262 4fb4636 56dc0d1 4fb4636 c48497c 1ccf8ee 49be262 56dc0d1 1ccf8ee 56dc0d1 1ccf8ee 56dc0d1 49be262 1ccf8ee 49be262 1ccf8ee 49be262 1ccf8ee 49be262 1ccf8ee 49be262 1ccf8ee 49be262 56dc0d1 1ccf8ee 56dc0d1 1ccf8ee 56dc0d1 1ccf8ee 49be262 4fb4636 c48497c 4fb4636 c48497c 4fb4636 c48497c 1ccf8ee cdd0fc4 1ccf8ee 49be262 1ccf8ee c48497c 1ccf8ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
import os
import mne
import numpy as np
import pandas as pd
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
# Load LLM
model_name = "tiiuae/falcon-7b-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
trust_remote_code=True,
torch_dtype=torch.float16,
device_map="auto"
)
def compute_band_power(psd, freqs, fmin, fmax):
freq_mask = (freqs >= fmin) & (freqs <= fmax)
band_psd = psd[:, freq_mask].mean()
return float(band_psd)
def inspect_file(file):
"""
Inspect the uploaded file to determine available columns.
If FIF: Just inform that it's an MNE file and no time column is needed.
If CSV: Return a list of columns (both numeric and non-numeric).
"""
if file is None:
return "No file uploaded.", [], "No preview available."
file_path = file.name
_, file_ext = os.path.splitext(file_path)
file_ext = file_ext.lower()
if file_ext == ".fif":
# FIF files: We know they're MNE compatible
# No columns to choose from, just proceed with default analysis
return (
"FIF file detected. No need for time column selection. Default sampling frequency will be read from file.",
[],
"FIF file doesn't require further inspection."
)
elif file_ext == ".csv":
# Read a small portion of the CSV to determine columns
try:
df = pd.read_csv(file_path, nrows=5)
except Exception as e:
return f"Error reading CSV: {e}", [], "Could not read CSV preview."
cols = list(df.columns)
preview = df.head().to_markdown()
return (
"CSV file detected. Select a time column if available, or leave it blank and specify a default frequency.",
cols,
preview
)
else:
return "Unsupported file format.", [], "No preview available."
def load_eeg_data(file_path, default_sfreq=256.0, time_col='time'):
"""
Load EEG data with flexibility.
If FIF: Use MNE's read_raw_fif directly.
If CSV:
- If time_col is given and present in the file, use it.
- Otherwise, assume default_sfreq.
"""
_, file_ext = os.path.splitext(file_path)
file_ext = file_ext.lower()
if file_ext == '.fif':
raw = mne.io.read_raw_fif(file_path, preload=True)
elif file_ext == '.csv':
df = pd.read_csv(file_path)
# If time_col is specified and in df, use it to compute sfreq
if time_col and time_col in df.columns:
time = df[time_col].values
data_df = df.drop(columns=[time_col])
# Drop non-numeric columns
for col in data_df.columns:
if not pd.api.types.is_numeric_dtype(data_df[col]):
data_df = data_df.drop(columns=[col])
if len(time) < 2:
# Not enough time points, fallback to default_sfreq
sfreq = default_sfreq
else:
# Compute sfreq from time
sfreq = 1.0 / np.mean(np.diff(time))
else:
# No time column used, assume default_sfreq
# Drop non-numeric columns
for col in df.columns:
if not pd.api.types.is_numeric_dtype(df[col]):
df = df.drop(columns=[col])
data_df = df
sfreq = default_sfreq
ch_names = list(data_df.columns)
data = data_df.values.T # shape: (n_channels, n_samples)
ch_types = ['eeg'] * len(ch_names)
info = mne.create_info(ch_names=ch_names, sfreq=sfreq, ch_types=ch_types)
raw = mne.io.RawArray(data, info)
else:
raise ValueError("Unsupported file format. Provide a FIF or CSV file.")
return raw
def analyze_eeg(file, default_sfreq, time_col):
if file is None:
return "No file uploaded."
raw = load_eeg_data(file.name, default_sfreq=float(default_sfreq), time_col=time_col)
psd, freqs = mne.time_frequency.psd_welch(raw, fmin=1, fmax=40)
alpha_power = compute_band_power(psd, freqs, 8, 12)
beta_power = compute_band_power(psd, freqs, 13, 30)
data_summary = (
f"Alpha power: {alpha_power:.3f}, Beta power: {beta_power:.3f}. "
f"The EEG shows stable alpha rhythms and slightly elevated beta activity."
)
prompt = f"""You are a neuroscientist analyzing EEG features.
Data Summary: {data_summary}
Provide a concise, user-friendly interpretation of these findings in simple terms.
"""
inputs = tokenizer.encode(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(
inputs, max_length=200, do_sample=True, top_k=50, top_p=0.95
)
summary = tokenizer.decode(outputs[0], skip_special_tokens=True)
return summary
#########################
# BUILD THE GRADIO INTERFACE
#########################
# Step 1: Inspect file
def preview_file(file):
msg, cols, preview = inspect_file(file)
# Instead of gr.Dropdown.update(...)
return msg, {"choices": cols, "value": None}, preview
with gr.Blocks() as demo:
gr.Markdown("# NeuroNarrative-Lite: EEG Summary with Flexible Preprocessing")
gr.Markdown(
"Upload an EEG file (FIF or CSV). If it's CSV, we will inspect the file and let you choose a time column. "
"If no suitable time column is found, leave it blank and provide a default sampling frequency."
)
file_input = gr.File(label="Upload your EEG data (FIF or CSV)")
preview_button = gr.Button("Inspect File")
msg_output = gr.Markdown()
cols_dropdown = gr.Dropdown(label="Select Time Column (optional)", interactive=True)
preview_output = gr.Markdown()
preview_button.click(preview_file, inputs=[file_input], outputs=[msg_output, cols_dropdown, preview_output])
default_sfreq_input = gr.Textbox(label="Default Sampling Frequency (Hz) if no time column", value="256")
analyze_button = gr.Button("Run Analysis")
result_output = gr.Textbox(label="Analysis Summary")
analyze_button.click(analyze_eeg,
inputs=[file_input, default_sfreq_input, cols_dropdown],
outputs=[result_output])
if __name__ == "__main__":
demo.launch()
|