Spaces:
Sleeping
Sleeping
import streamlit as st | |
from ultralytics import YOLO | |
from PIL import Image | |
import torchvision.transforms as transforms | |
import base64 | |
import cv2 | |
import numpy as np | |
# Set Streamlit Page Configuration | |
st.set_page_config( | |
page_title="PPE Detect", | |
page_icon="logo/logo.png", | |
layout="centered" | |
) | |
# Cache the YOLO model to optimize performance | |
def load_model(): | |
return YOLO("model/best.pt") # Ensure correct model path | |
model = load_model() | |
# Define image transformation pipeline | |
transform = transforms.Compose([ | |
transforms.Resize((640, 640)), | |
transforms.ToTensor() | |
]) | |
# Function to perform PPE detection on images | |
def predict_ppe(image: Image.Image): | |
try: | |
image_tensor = transform(image).unsqueeze(0) # Add batch dimension | |
results = model.predict(image_tensor) | |
output_image = results[0].plot() # Overlay predictions | |
return Image.fromarray(output_image) | |
except Exception as e: | |
st.error(f"Prediction Error: {e}") | |
return None | |
# Function to encode image to base64 for embedding | |
def get_base64_image(image_path): | |
try: | |
with open(image_path, "rb") as img_file: | |
return base64.b64encode(img_file.read()).decode() | |
except FileNotFoundError: | |
return None | |
# Function for real-time PPE detection using webcam | |
def live_ppe_detection(): | |
st.sidebar.write("Starting live detection...") | |
cap = cv2.VideoCapture(0) | |
if not cap.isOpened(): | |
st.sidebar.error("Error: Could not open webcam.") | |
return | |
stframe = st.empty() | |
stop_button = st.sidebar.button("Stop Live Detection", key="stop_button") | |
while cap.isOpened(): | |
ret, frame = cap.read() | |
if not ret: | |
st.sidebar.error("Failed to capture video frame.") | |
break | |
results = model.predict(frame) | |
output_frame = results[0].plot() | |
stframe.image(output_frame, channels="BGR") | |
if stop_button: | |
break | |
cap.release() | |
cv2.destroyAllWindows() | |
# Display logo | |
image_base64 = get_base64_image("logo/logo.png") | |
if image_base64: | |
st.markdown( | |
f'<div style="text-align: center;"><img src="data:image/png;base64,{image_base64}" width="100"></div>', | |
unsafe_allow_html=True | |
) | |
# UI Customization | |
st.markdown(""" | |
<style> | |
[data-testid="stSidebar"] { background-color: #1E1E2F; } | |
[data-testid="stSidebar"] h1, [data-testid="stSidebar"] h2 { color: white; } | |
h1 { text-align: center; font-size: 36px; font-weight: bold; color: #2C3E50; } | |
div.stButton > button { background-color: #3498DB; color: white; font-weight: bold; } | |
div.stButton > button:hover { background-color: #2980B9; } | |
</style> | |
""", unsafe_allow_html=True) | |
# Sidebar - File Upload | |
st.sidebar.header("π€ Upload an Image") | |
uploaded_file = st.sidebar.file_uploader("Drag and drop or browse", type=['jpg', 'png', 'jpeg']) | |
# Sidebar - Live Predictions | |
st.sidebar.header("π‘ Live Predictions") | |
if st.sidebar.button("Start Live Detection", key="start_button"): | |
live_ppe_detection() | |
# Main Page | |
st.title("PPE Detect") | |
st.markdown("<p style='text-align: center;'>Detect personal protective equipment (PPE) in images.</p>", unsafe_allow_html=True) | |
if uploaded_file: | |
image = Image.open(uploaded_file).convert("RGB") | |
col1, col2 = st.columns(2) | |
with col1: | |
st.image(image, caption="π· Uploaded Image", use_container_width=True) | |
if st.sidebar.button("π Predict PPE", key="predict_button"): | |
detected_image = predict_ppe(image) | |
if detected_image: | |
with col2: | |
st.image(detected_image, caption="π― PPE Detection Result", use_container_width=True) | |
else: | |
st.error("Detection failed. Please try again.") | |
st.info("This app uses **YOLO** for PPE detection. Upload an image or start live detection to get started.") | |