CLIPfa-Demo / app.py
SajjadAyoubi's picture
Update app.py
b5870b3
raw
history blame
2.07 kB
import streamlit as st
import numpy as np
from html import escape
import torch
from transformers import RobertaModel, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('SajjadAyoubi/clip-fa-text')
text_encoder = RobertaModel.from_pretrained('SajjadAyoubi/clip-fa-text').eval()
image_embeddings = torch.load('embedding.pt')
links = np.load('data.npy', allow_pickle=True)
def get_html(url_list):
html = "<div style='margin-top: 50px; max-width: 1200px; display: flex; flex-wrap: wrap; justify-content: space-evenly'>"
for url in url_list:
html2 = f"<img style='height: 200px; margin: 2px' src='{escape(url)}'>"
html = html + html2
html += "</div>"
return html
def image_search(query, top_k=8):
with torch.no_grad():
text_embedding = text_encoder(**tokenizer(query, return_tensors='pt')).pooler_output
values, indices = torch.cosine_similarity(text_embedding, image_embeddings).sort(descending=True)
return [links[i] for i in indices[:top_k]]
description = '''
# Semantic image search :)
'''
def main():
st.markdown('''
<style>
.block-container{
max-width: 1200px;
}
section.main>div:first-child {
padding-top: 0px;
}
section:not(.main)>div:first-child {
padding-top: 30px;
}
div.reportview-container > section:first-child{
max-width: 320px;
}
#MainMenu {
visibility: hidden;
}
footer {
visibility: hidden;
}
</style>''',
unsafe_allow_html=True)
st.sidebar.markdown(description)
_, c, _ = st.columns((1, 3, 1))
query = c.text_input('Search text', value='مرغ دریای')
if len(query) > 0:
results = image_search(query)
st.markdown(get_html(results), unsafe_allow_html=True)
if __name__ == '__main__':
main()