File size: 6,003 Bytes
e4f36a2 8fe789c e4f36a2 8fe789c b95597f e4f36a2 8fe789c e4f36a2 eb6c04e 8fe789c 2f3f6c8 8fe789c b95597f 8fe789c c5b8c4a eb6c04e e4f36a2 8fe789c e4f36a2 8fe789c e4f36a2 8fe789c e4f36a2 c295df7 e4f36a2 8fe789c c295df7 8fe789c e4f36a2 8fe789c e4f36a2 8fe789c c295df7 8fe789c c295df7 8fe789c e4f36a2 2f3f6c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
import gradio as gr
from groq import Groq
import os
import threading # Import threading module
# Initialize Groq client with your API key
client = Groq(api_key=os.environ["GROQ_API_KEY"])
# Load Text-to-Image Models
model1 = gr.load("models/prithivMLmods/SD3.5-Turbo-Realism-2.0-LoRA")
model2 = gr.load("models/Purz/face-projection")
# Stop event for threading (image generation)
stop_event = threading.Event()
# Function to generate tutor output (lesson, question, feedback)
def generate_tutor_output(subject, difficulty, student_input):
prompt = f"""
You are an expert tutor in {subject} at the {difficulty} level.
The student has provided the following input: "{student_input}"
Please generate:
1. A brief, engaging lesson on the topic (2-3 paragraphs)
2. A thought-provoking question to check understanding
3. Constructive feedback on the student's input
Format your response as a JSON object with keys: "lesson", "question", "feedback"
"""
completion = client.chat.completions.create(
messages=[{
"role": "system",
"content": f"You are the world's best AI tutor, renowned for your ability to explain complex concepts in an engaging, clear, and memorable way and giving math examples. Your expertise in {subject} is unparalleled, and you're adept at tailoring your teaching to {difficulty} level students."
}, {
"role": "user",
"content": prompt,
}],
model="mixtral-8x7b-32768", # Model for text generation
max_tokens=1000,
)
return completion.choices[0].message.content
# Function to generate images based on model selection
def generate_images(text, selected_model):
stop_event.clear()
if selected_model == "Model 1 (Turbo Realism)":
model = model1
elif selected_model == "Model 2 (Face Projection)":
model = model2
else:
return ["Invalid model selection."] * 3
results = []
for i in range(3):
if stop_event.is_set():
return ["Image generation stopped by user."] * 3
modified_text = f"{text} variation {i+1}"
result = model(modified_text)
results.append(result)
return results
# Set up the Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# 🎓 Your AI Tutor with Visuals & Images")
# Section for generating Text-based output (lesson, question, feedback)
with gr.Row():
with gr.Column(scale=2):
# Input fields for subject, difficulty, and student input for textual output
subject = gr.Dropdown(
["Math", "Science", "History", "Literature", "Code", "AI"],
label="Subject",
info="Choose the subject of your lesson"
)
difficulty = gr.Radio(
["Beginner", "Intermediate", "Advanced"],
label="Difficulty Level",
info="Select your proficiency level"
)
student_input = gr.Textbox(
placeholder="Type your query here...",
label="Your Input",
info="Enter the topic you want to learn"
)
submit_button_text = gr.Button("Generate Lesson & Question", variant="primary")
with gr.Column(scale=3):
# Output fields for lesson, question, and feedback
lesson_output = gr.Markdown(label="Lesson")
question_output = gr.Markdown(label="Comprehension Question")
feedback_output = gr.Markdown(label="Feedback")
# Section for generating Visual output
with gr.Row():
with gr.Column(scale=2):
# Input fields for text and model selection for image generation
model_selector = gr.Radio(
["Model 1 (Turbo Realism)", "Model 2 (Face Projection)"],
label="Select Image Generation Model",
value="Model 1 (Turbo Realism)"
)
submit_button_visual = gr.Button("Generate Visuals", variant="primary")
with gr.Column(scale=3):
# Output fields for generated images
output1 = gr.Image(label="Generated Image 1")
output2 = gr.Image(label="Generated Image 2")
output3 = gr.Image(label="Generated Image 3")
gr.Markdown("""
### How to Use
1. **Text Section**: Select a subject and difficulty, type your query, and click 'Generate Lesson & Question' to get your personalized lesson, comprehension question, and feedback.
2. **Visual Section**: Select the model for image generation, then click 'Generate Visuals' to receive 3 variations of an image based on your topic.
3. Review the AI-generated content to enhance your learning experience!
""")
def process_output_text(subject, difficulty, student_input):
try:
tutor_output = generate_tutor_output(subject, difficulty, student_input)
parsed = eval(tutor_output) # Convert string to dictionary
return parsed["lesson"], parsed["question"], parsed["feedback"]
except:
return "Error parsing output", "No question available", "No feedback available"
def process_output_visual(text, selected_model):
try:
images = generate_images(text, selected_model) # Generate images
return images[0], images[1], images[2]
except:
return None, None, None
# Generate Text-based Output
submit_button_text.click(
fn=process_output_text,
inputs=[subject, difficulty, student_input],
outputs=[lesson_output, question_output, feedback_output]
)
# Generate Visual Output
submit_button_visual.click(
fn=process_output_visual,
inputs=[student_input, model_selector],
outputs=[output1, output2, output3]
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860)
|