File size: 6,003 Bytes
e4f36a2
8fe789c
 
 
e4f36a2
8fe789c
 
 
 
b95597f
 
e4f36a2
8fe789c
 
 
 
e4f36a2
 
 
 
 
 
 
 
 
 
 
 
eb6c04e
8fe789c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f3f6c8
8fe789c
 
 
 
b95597f
8fe789c
 
 
 
 
 
 
 
 
 
 
 
c5b8c4a
eb6c04e
e4f36a2
8fe789c
 
 
e4f36a2
 
8fe789c
e4f36a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8fe789c
e4f36a2
 
c295df7
e4f36a2
 
 
 
8fe789c
c295df7
8fe789c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4f36a2
 
8fe789c
 
 
e4f36a2
8fe789c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c295df7
8fe789c
c295df7
8fe789c
 
 
 
 
 
e4f36a2
 
2f3f6c8
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import gradio as gr
from groq import Groq
import os
import threading  # Import threading module

# Initialize Groq client with your API key
client = Groq(api_key=os.environ["GROQ_API_KEY"])

# Load Text-to-Image Models
model1 = gr.load("models/prithivMLmods/SD3.5-Turbo-Realism-2.0-LoRA")
model2 = gr.load("models/Purz/face-projection")

# Stop event for threading (image generation)
stop_event = threading.Event()

# Function to generate tutor output (lesson, question, feedback)
def generate_tutor_output(subject, difficulty, student_input):
    prompt = f"""
    You are an expert tutor in {subject} at the {difficulty} level. 
    The student has provided the following input: "{student_input}"
    
    Please generate:
    1. A brief, engaging lesson on the topic (2-3 paragraphs)
    2. A thought-provoking question to check understanding
    3. Constructive feedback on the student's input
    
    Format your response as a JSON object with keys: "lesson", "question", "feedback"
    """
    
    completion = client.chat.completions.create(
        messages=[{
            "role": "system",
            "content": f"You are the world's best AI tutor, renowned for your ability to explain complex concepts in an engaging, clear, and memorable way and giving math examples. Your expertise in {subject} is unparalleled, and you're adept at tailoring your teaching to {difficulty} level students."
        }, {
            "role": "user",
            "content": prompt,
        }],
        model="mixtral-8x7b-32768",  # Model for text generation
        max_tokens=1000,
    )
    
    return completion.choices[0].message.content

# Function to generate images based on model selection
def generate_images(text, selected_model):
    stop_event.clear()

    if selected_model == "Model 1 (Turbo Realism)":
        model = model1
    elif selected_model == "Model 2 (Face Projection)":
        model = model2
    else:
        return ["Invalid model selection."] * 3

    results = []
    for i in range(3):
        if stop_event.is_set():
            return ["Image generation stopped by user."] * 3

        modified_text = f"{text} variation {i+1}"
        result = model(modified_text)
        results.append(result)

    return results

# Set up the Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# 🎓 Your AI Tutor with Visuals & Images")

    # Section for generating Text-based output (lesson, question, feedback)
    with gr.Row():
        with gr.Column(scale=2):
            # Input fields for subject, difficulty, and student input for textual output
            subject = gr.Dropdown(
                ["Math", "Science", "History", "Literature", "Code", "AI"], 
                label="Subject", 
                info="Choose the subject of your lesson"
            )
            difficulty = gr.Radio(
                ["Beginner", "Intermediate", "Advanced"], 
                label="Difficulty Level", 
                info="Select your proficiency level"
            )
            student_input = gr.Textbox(
                placeholder="Type your query here...", 
                label="Your Input", 
                info="Enter the topic you want to learn"
            )
            submit_button_text = gr.Button("Generate Lesson & Question", variant="primary")
        
        with gr.Column(scale=3):
            # Output fields for lesson, question, and feedback
            lesson_output = gr.Markdown(label="Lesson")
            question_output = gr.Markdown(label="Comprehension Question")
            feedback_output = gr.Markdown(label="Feedback")
    
    # Section for generating Visual output
    with gr.Row():
        with gr.Column(scale=2):
            # Input fields for text and model selection for image generation
            model_selector = gr.Radio(
                ["Model 1 (Turbo Realism)", "Model 2 (Face Projection)"],
                label="Select Image Generation Model",
                value="Model 1 (Turbo Realism)"
            )
            submit_button_visual = gr.Button("Generate Visuals", variant="primary")
        
        with gr.Column(scale=3):
            # Output fields for generated images
            output1 = gr.Image(label="Generated Image 1")
            output2 = gr.Image(label="Generated Image 2")
            output3 = gr.Image(label="Generated Image 3")
    
    gr.Markdown("""
    ### How to Use
    1. **Text Section**: Select a subject and difficulty, type your query, and click 'Generate Lesson & Question' to get your personalized lesson, comprehension question, and feedback.
    2. **Visual Section**: Select the model for image generation, then click 'Generate Visuals' to receive 3 variations of an image based on your topic.
    3. Review the AI-generated content to enhance your learning experience!
    """)
    
    def process_output_text(subject, difficulty, student_input):
        try:
            tutor_output = generate_tutor_output(subject, difficulty, student_input)
            parsed = eval(tutor_output)  # Convert string to dictionary
            return parsed["lesson"], parsed["question"], parsed["feedback"]
        except:
            return "Error parsing output", "No question available", "No feedback available"
    
    def process_output_visual(text, selected_model):
        try:
            images = generate_images(text, selected_model)  # Generate images
            return images[0], images[1], images[2]
        except:
            return None, None, None
    
    # Generate Text-based Output
    submit_button_text.click(
        fn=process_output_text,
        inputs=[subject, difficulty, student_input],
        outputs=[lesson_output, question_output, feedback_output]
    )
    
    # Generate Visual Output
    submit_button_visual.click(
        fn=process_output_visual,
        inputs=[student_input, model_selector],
        outputs=[output1, output2, output3]
    )

if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0", server_port=7860)