File size: 2,126 Bytes
5d670ae
da9f292
5d670ae
da9f292
 
5d670ae
da9f292
363a646
65ed4c1
363a646
da9f292
ddf8948
 
 
 
 
 
 
3ca006e
 
ddf8948
ee1d691
ddf8948
 
 
78e8bf3
ddf8948
 
 
 
78e8bf3
ddf8948
 
477d4fe
ddf8948
 
78e8bf3
ddf8948
 
 
 
acddb2f
103f82b
ddf8948
 
 
 
 
292bc54
ddf8948
 
 
 
 
 
 
103f82b
ddf8948
8fe1b94
65ed4c1
2132698
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import easyocr
import numpy as np
import cv2
import re

reader = easyocr.Reader(['en'], gpu=False)

def extract_weight_from_image(pil_img):
    try:
        img = np.array(pil_img)

        max_dim = 1000
        height, width = img.shape[:2]
        if max(height, width) > max_dim:
            scale = max_dim / max(height, width)
            img = cv2.resize(img, None, fx=scale, fy=scale, interpolation=cv2.INTER_AREA)

        results = reader.readtext(img)
        print("DEBUG OCR RESULTS:", results)

        raw_texts = []
        weight_candidates = []
        fallback_weight = None
        fallback_conf = 0.0

        for box, (text, conf) in results:  # βœ… THIS LINE IS CORRECT
            original = text
            cleaned = text.lower().strip()

            cleaned = cleaned.replace(",", ".")
            cleaned = cleaned.replace("o", "0").replace("s", "5").replace("g", "9")
            cleaned = cleaned.replace("kg", "").replace("kgs", "")
            cleaned = re.sub(r"[^0-9\.]", "", cleaned)

            raw_texts.append(f"{original} β†’ {cleaned} (conf: {round(conf, 2)})")

            if cleaned.replace(".", "").isdigit() and not fallback_weight:
                fallback_weight = cleaned
                fallback_conf = conf

            if cleaned.count(".") <= 1 and re.fullmatch(r"\d{2,4}(\.\d{1,3})?", cleaned):
                weight_candidates.append((cleaned, conf))

        if weight_candidates:
            best_weight, best_conf = sorted(weight_candidates, key=lambda x: -x[1])[0]
        elif fallback_weight:
            best_weight, best_conf = fallback_weight, fallback_conf
        else:
            return "Not detected", 0.0, "OCR returned nothing useful"

        if "." in best_weight:
            int_part, dec_part = best_weight.split(".")
            int_part = int_part.lstrip("0") or "0"
            best_weight = f"{int_part}.{dec_part}"
        else:
            best_weight = best_weight.lstrip("0") or "0"

        return best_weight, round(best_conf * 100, 2), "\n".join(raw_texts)

    except Exception as e:
        return f"Error: {str(e)}", 0.0, "OCR failed"