AutoWeightLogger / ocr_engine.py
Sanjayraju30's picture
Update ocr_engine.py
2469d8d verified
raw
history blame
1.47 kB
import easyocr
import numpy as np
import cv2
import re
reader = easyocr.Reader(['en'], gpu=False)
def extract_weight_from_image(pil_img):
try:
# Convert PIL to NumPy
img = np.array(pil_img)
# Step 1: Preprocessing
img = cv2.resize(img, None, fx=3.5, fy=3.5, interpolation=cv2.INTER_LINEAR)
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
# Improve contrast & threshold
blur = cv2.GaussianBlur(gray, (5, 5), 0)
_, binary = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
binary = cv2.bitwise_not(binary)
# Step 2: OCR with bounding boxes
results = reader.readtext(binary, detail=1)
# Step 3: Filter for weight-like values
weight_candidates = []
for bbox, text, conf in results:
clean = text.lower().replace("kg", "").replace("kgs", "").strip()
clean = clean.replace("o", "0").replace("O", "0") # common OCR mistake
# Match like 2 digits or 3 digits or decimal numbers
if re.fullmatch(r"\d{2,4}(\.\d{1,2})?", clean):
weight_candidates.append((clean, conf))
if not weight_candidates:
return "Not detected", 0.0
# Step 4: Pick most confident
best_weight, best_conf = sorted(weight_candidates, key=lambda x: -x[1])[0]
return best_weight, round(best_conf * 100, 2)
except Exception as e:
return f"Error: {str(e)}", 0.0