Spaces:
Runtime error
Runtime error
import easyocr | |
import numpy as np | |
import cv2 | |
import re | |
reader = easyocr.Reader(['en'], gpu=False) | |
def extract_weight_from_image(pil_img): | |
try: | |
# Convert PIL to NumPy | |
img = np.array(pil_img) | |
# Step 1: Preprocessing | |
img = cv2.resize(img, None, fx=3.5, fy=3.5, interpolation=cv2.INTER_LINEAR) | |
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) | |
# Improve contrast & threshold | |
blur = cv2.GaussianBlur(gray, (5, 5), 0) | |
_, binary = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) | |
binary = cv2.bitwise_not(binary) | |
# Step 2: OCR with bounding boxes | |
results = reader.readtext(binary, detail=1) | |
# Step 3: Filter for weight-like values | |
weight_candidates = [] | |
for bbox, text, conf in results: | |
clean = text.lower().replace("kg", "").replace("kgs", "").strip() | |
clean = clean.replace("o", "0").replace("O", "0") # common OCR mistake | |
# Match like 2 digits or 3 digits or decimal numbers | |
if re.fullmatch(r"\d{2,4}(\.\d{1,2})?", clean): | |
weight_candidates.append((clean, conf)) | |
if not weight_candidates: | |
return "Not detected", 0.0 | |
# Step 4: Pick most confident | |
best_weight, best_conf = sorted(weight_candidates, key=lambda x: -x[1])[0] | |
return best_weight, round(best_conf * 100, 2) | |
except Exception as e: | |
return f"Error: {str(e)}", 0.0 | |