Spaces:
Running
Running
import easyocr | |
import numpy as np | |
import cv2 | |
import re | |
import logging | |
from datetime import datetime | |
import os | |
# Set up logging for debugging | |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') | |
# Initialize EasyOCR | |
easyocr_reader = easyocr.Reader(['en'], gpu=False) | |
# Directory for debug images | |
DEBUG_DIR = "debug_images" | |
os.makedirs(DEBUG_DIR, exist_ok=True) | |
def save_debug_image(img, filename_suffix, prefix=""): | |
"""Saves an image to the debug directory with a timestamp.""" | |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f") | |
filename = os.path.join(DEBUG_DIR, f"{prefix}{timestamp}_{filename_suffix}.png") | |
if len(img.shape) == 3: # Color image | |
cv2.imwrite(filename, img) | |
else: # Grayscale image | |
cv2.imwrite(filename, img) | |
logging.info(f"Saved debug image: {filename}") | |
def estimate_brightness(img): | |
"""Estimate image brightness to detect illuminated displays.""" | |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) | |
return np.mean(gray) | |
def preprocess_image(img): | |
"""Preprocess image for better OCR accuracy.""" | |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) | |
# Apply bilateral filter to preserve edges | |
denoised = cv2.bilateralFilter(gray, 11, 17, 17) | |
save_debug_image(denoised, "01_preprocess_bilateral") | |
# Enhance contrast using CLAHE | |
clahe = cv2.createCLAHE(clipLimit=2.5, tileGridSize=(8, 8)) | |
enhanced = clahe.apply(denoised) | |
save_debug_image(enhanced, "02_preprocess_clahe") | |
# Sharpen the image | |
kernel_sharpening = np.array([[-1, -1, -1], [-1, 9, -1], [-1, -1, -1]]) | |
sharpened = cv2.filter2D(enhanced, -1, kernel_sharpening) | |
save_debug_image(sharpened, "03_preprocess_sharpened") | |
return sharpened | |
def correct_rotation(img): | |
"""Correct image rotation using Hough Transform.""" | |
try: | |
edges = cv2.Canny(cv2.cvtColor(img, cv2.COLOR_BGR2GRAY), 100, 200) | |
lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=100, minLineLength=100, maxLineGap=10) | |
if lines is not None: | |
angles = [np.arctan2(line[0][3] - line[0][1], line[0][2] - line[0][0]) * 180 / np.pi for line in lines] | |
angle = np.median(angles) # Use median for robustness | |
if abs(angle) > 5: | |
(h, w) = img.shape[:2] | |
center = (w // 2, h // 2) | |
M = cv2.getRotationMatrix2D(center, angle, 1.0) | |
img = cv2.warpAffine(img, M, (w, h)) | |
save_debug_image(img, "00_rotated_image") | |
logging.info(f"Applied rotation correction: {angle:.2f} degrees") | |
return img | |
except Exception as e: | |
logging.error(f"Rotation correction failed: {str(e)}") | |
return img | |
def detect_roi(img): | |
"""Detect and crop the region of interest (likely the digital display).""" | |
try: | |
save_debug_image(img, "04_original") | |
preprocessed = preprocess_image(img) | |
brightness_map = cv2.GaussianBlur(cv2.cvtColor(img, cv2.COLOR_BGR2GRAY), (15, 15), 0) | |
# Dynamic adaptive thresholding | |
block_size = max(11, min(31, int(img.shape[0] / 20) * 2 + 1)) | |
thresh = cv2.adaptiveThreshold(preprocessed, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, | |
cv2.THRESH_BINARY_INV, block_size, 5) | |
_, otsu_thresh = cv2.threshold(preprocessed, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU) | |
combined_thresh = cv2.bitwise_and(thresh, otsu_thresh) | |
save_debug_image(combined_thresh, "05_roi_combined_threshold") | |
# Morphological operations to connect digits | |
kernel = np.ones((5, 5), np.uint8) | |
dilated = cv2.dilate(combined_thresh, kernel, iterations=2) | |
eroded = cv2.erode(dilated, kernel, iterations=1) | |
save_debug_image(eroded, "06_roi_morphological") | |
contours, _ = cv2.findContours(eroded, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) | |
if contours: | |
img_area = img.shape[0] * img.shape[1] | |
valid_contours = [] | |
for c in contours: | |
area = cv2.contourArea(c) | |
x, y, w, h = cv2.boundingRect(c) | |
roi_brightness = np.mean(brightness_map[y:y+h, x:x+w]) | |
aspect_ratio = w / h | |
if (500 < area < (img_area * 0.9) and | |
0.8 <= aspect_ratio <= 12.0 and w > 60 and h > 30 and roi_brightness > 80): | |
valid_contours.append((c, roi_brightness)) | |
logging.debug(f"Contour: Area={area}, Aspect={aspect_ratio:.2f}, Brightness={roi_brightness:.2f}") | |
if valid_contours: | |
contour, _ = max(valid_contours, key=lambda x: x[1]) # Max brightness | |
x, y, w, h = cv2.boundingRect(contour) | |
padding = 100 | |
x, y = max(0, x - padding), max(0, y - padding) | |
w, h = min(w + 2 * padding, img.shape[1] - x), min(h + 2 * padding, img.shape[0] - y) | |
roi_img = img[y:y+h, x:x+w] | |
save_debug_image(roi_img, "07_detected_roi") | |
logging.info(f"Detected ROI with dimensions: ({x}, {y}, {w}, {h})") | |
return roi_img, (x, y, w, h) | |
logging.info("No suitable ROI found, attempting fallback criteria.") | |
# Fallback with relaxed criteria | |
valid_contours = [c for c in contours if 300 < cv2.contourArea(c) < (img_area * 0.95) and | |
0.5 <= cv2.boundingRect(c)[2]/cv2.boundingRect(c)[3] <= 15.0] | |
if valid_contours: | |
contour = max(valid_contours, key=cv2.contourArea) | |
x, y, w, h = cv2.boundingRect(contour) | |
padding = 100 | |
x, y = max(0, x - padding), max(0, y - padding) | |
w, h = min(w + 2 * padding, img.shape[1] - x), min(h + 2 * padding, img.shape[0] - y) | |
roi_img = img[y:y+h, x:x+w] | |
save_debug_image(roi_img, "07_detected_roi_fallback") | |
logging.info(f"Detected fallback ROI with dimensions: ({x}, {y}, {w}, {h})") | |
return roi_img, (x, y, w, h) | |
logging.info("No suitable ROI found, returning original image.") | |
save_debug_image(img, "07_no_roi_original_fallback") | |
return img, None | |
except Exception as e: | |
logging.error(f"ROI detection failed: {str(e)}") | |
save_debug_image(img, "07_roi_detection_error_fallback") | |
return img, None | |
def detect_segments(digit_img, brightness): | |
"""Detect seven-segment patterns in a digit image.""" | |
h, w = digit_img.shape | |
if h < 15 or w < 10: | |
return None | |
segments = { | |
'top': (int(w*0.15), int(w*0.85), 0, int(h*0.2)), | |
'middle': (int(w*0.15), int(w*0.85), int(h*0.45), int(h*0.55)), | |
'bottom': (int(w*0.15), int(w*0.85), int(h*0.8), h), | |
'left_top': (0, int(w*0.25), int(h*0.15), int(h*0.5)), | |
'left_bottom': (0, int(w*0.25), int(h*0.5), int(h*0.85)), | |
'right_top': (int(w*0.75), w, int(h*0.15), int(h*0.5)), | |
'right_bottom': (int(w*0.75), w, int(h*0.5), int(h*0.85)) | |
} | |
segment_presence = {} | |
for name, (x1, x2, y1, y2) in segments.items(): | |
x1, y1 = max(0, x1), max(0, y1) | |
x2, y2 = min(w, x2), min(h, y2) | |
region = digit_img[y1:y2, x1:x2] | |
if region.size == 0: | |
segment_presence[name] = False | |
continue | |
pixel_count = np.sum(region == 255) | |
total_pixels = region.size | |
segment_presence[name] = pixel_count / total_pixels > (0.25 if brightness < 100 else 0.45) | |
digit_patterns = { | |
'0': ('top', 'bottom', 'left_top', 'left_bottom', 'right_top', 'right_bottom'), | |
'1': ('right_top', 'right_bottom'), | |
'2': ('top', 'middle', 'bottom', 'left_bottom', 'right_top'), | |
'3': ('top', 'middle', 'bottom', 'right_top', 'right_bottom'), | |
'4': ('middle', 'left_top', 'right_top', 'right_bottom'), | |
'5': ('top', 'middle', 'bottom', 'left_top', 'right_bottom'), | |
'6': ('top', 'middle', 'bottom', 'left_top', 'left_bottom', 'right_bottom'), | |
'7': ('top', 'right_top', 'right_bottom'), | |
'8': ('top', 'middle', 'bottom', 'left_top', 'left_bottom', 'right_top', 'right_bottom'), | |
'9': ('top', 'middle', 'bottom', 'left_top', 'right_top', 'right_bottom') | |
} | |
best_match = None | |
max_score = -1 | |
for digit, pattern in digit_patterns.items(): | |
matches = sum(1 for segment in pattern if segment_presence.get(segment, False)) | |
non_matches_penalty = sum(1 for segment in segment_presence if segment not in pattern and segment_presence[segment]) | |
score = matches - 0.2 * non_matches_penalty | |
if matches >= len(pattern) * 0.75: | |
score += 1.0 | |
if score > max_score: | |
max_score = score | |
best_match = digit | |
logging.debug(f"Segment presence: {segment_presence}, Detected digit: {best_match}") | |
return best_match | |
def custom_seven_segment_ocr(img, roi_bbox): | |
"""Perform custom OCR for seven-segment displays.""" | |
try: | |
preprocessed = preprocess_image(img) | |
brightness = estimate_brightness(img) | |
thresh_value = 100 if brightness < 100 else 0 | |
_, thresh = cv2.threshold(preprocessed, thresh_value, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU) | |
save_debug_image(thresh, "08_roi_thresh_for_digits") | |
# Morphological operations to enhance digit segments | |
kernel = np.ones((3, 3), np.uint8) | |
thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=2) | |
save_debug_image(thresh, "09_morph_closed") | |
batch_size = max(4, min(16, int(img.shape[0] * img.shape[1] / 100000))) | |
results = easyocr_reader.readtext(thresh, detail=1, paragraph=False, | |
contrast_ths=0.3, adjust_contrast=1.0, | |
text_threshold=0.6, mag_ratio=3.0, | |
allowlist='0123456789.', batch_size=batch_size, y_ths=0.2) | |
logging.info(f"EasyOCR results: {results}") | |
if not results: | |
logging.info("EasyOCR found no digits.") | |
return None | |
digits_info = [] | |
for (bbox, text, conf) in results: | |
(x1, y1), (x2, y2), (x3, y3), (x4, y4) = bbox | |
h_bbox = max(y1, y2, y3, y4) - min(y1, y2, y3, y4) | |
if len(text) == 1 and (text.isdigit() or text == '.') and h_bbox > 8: | |
x_min, x_max = int(min(x1, x4)), int(max(x2, x3)) | |
y_min, y_max = int(min(y1, y2)), int(max(y3, y4)) | |
digits_info.append((x_min, x_max, y_min, y_max, text, conf)) | |
digits_info.sort(key=lambda x: x[0]) | |
recognized_text = "" | |
for idx, (x_min, x_max, y_min, y_max, easyocr_char, easyocr_conf) in enumerate(digits_info): | |
x_min, y_min = max(0, x_min), max(0, y_min) | |
x_max, y_max = min(thresh.shape[1], x_max), min(thresh.shape[0], y_max) | |
if x_max <= x_min or y_max <= y_min: | |
continue | |
digit_img_crop = thresh[y_min:y_max, x_min:x_max] | |
save_debug_image(digit_img_crop, f"10_digit_crop_{idx}_{easyocr_char}") | |
if easyocr_conf > 0.95 or easyocr_char == '.': | |
recognized_text += easyocr_char | |
else: | |
digit_from_segments = detect_segments(digit_img_crop, brightness) | |
recognized_text += digit_from_segments if digit_from_segments else easyocr_char | |
logging.info(f"Before validation, recognized_text: {recognized_text}") | |
text = re.sub(r"[^\d\.]", "", recognized_text) | |
if text.count('.') > 1: | |
text = text.replace('.', '', text.count('.') - 1) | |
if text and re.fullmatch(r"^\d*\.?\d*$", text): | |
text = text.strip('.') | |
if text == '': | |
return None | |
return text.lstrip('0') or '0' | |
logging.info(f"Custom OCR text '{recognized_text}' failed validation.") | |
return None | |
except Exception as e: | |
logging.error(f"Custom seven-segment OCR failed: {str(e)}") | |
return None | |
def extract_weight_from_image(pil_img): | |
"""Extract weight from a PIL image of a digital scale display.""" | |
try: | |
img = np.array(pil_img) | |
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) | |
save_debug_image(img, "00_input_image") | |
# Apply rotation correction | |
img = correct_rotation(img) | |
brightness = estimate_brightness(img) | |
conf_threshold = 0.7 if brightness > 150 else (0.6 if brightness > 80 else 0.4) | |
roi_img, roi_bbox = detect_roi(img) | |
if roi_bbox: | |
roi_area = roi_bbox[2] * roi_bbox[3] | |
conf_threshold *= 1.2 if roi_area > (img.shape[0] * img.shape[1] * 0.5) else 1.0 | |
custom_result = custom_seven_segment_ocr(roi_img, roi_bbox) | |
if custom_result: | |
try: | |
weight = float(custom_result) | |
if 0.001 <= weight <= 1000: | |
logging.info(f"Custom OCR result: {custom_result}, Confidence: 95.0%") | |
return custom_result, 95.0 | |
else: | |
logging.warning(f"Custom OCR result {custom_result} outside typical weight range.") | |
except ValueError: | |
logging.warning(f"Custom OCR result '{custom_result}' is not a valid number.") | |
logging.info("Custom OCR failed or invalid, falling back to enhanced EasyOCR.") | |
preprocessed_roi = preprocess_image(roi_img) | |
block_size = max(11, min(31, int(roi_img.shape[0] / 20) * 2 + 1)) | |
final_roi = cv2.adaptiveThreshold(preprocessed_roi, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, | |
cv2.THRESH_BINARY_INV, block_size, 8) | |
save_debug_image(final_roi, "11_fallback_adaptive_thresh") | |
batch_size = max(4, min(16, int(roi_img.shape[0] * roi_img.shape[1] / 100000))) | |
results = easyocr_reader.readtext(final_roi, detail=1, paragraph=False, | |
contrast_ths=0.4, adjust_contrast=1.2, | |
text_threshold=0.5, mag_ratio=4.0, | |
allowlist='0123456789. kglb', batch_size=batch_size, y_ths=0.2) | |
best_weight = None | |
best_conf = 0.0 | |
best_score = 0.0 | |
unit = None | |
for (bbox, text, conf) in results: | |
if 'kg' in text.lower(): | |
unit = 'kg' | |
continue | |
elif 'g' in text.lower(): | |
unit = 'g' | |
continue | |
elif 'lb' in text.lower(): | |
unit = 'lb' | |
continue | |
text = re.sub(r"[^\d\.]", "", text) | |
if text.count('.') > 1: | |
text = text.replace('.', '', text.count('.') - 1) | |
text = text.strip('.') | |
if re.fullmatch(r"^\d*\.?\d*$", text): | |
try: | |
weight = float(text) | |
if unit == 'g': | |
weight /= 1000 # Convert grams to kilograms | |
elif unit == 'lb': | |
weight *= 0.453592 # Convert pounds to kilograms | |
range_score = 1.5 if 0.001 <= weight <= 1000 else 0.8 | |
digit_count = len(text.replace('.', '')) | |
digit_score = 1.3 if 2 <= digit_count <= 7 else 0.9 | |
score = conf * range_score * digit_score | |
if roi_bbox: | |
(x_roi, y_roi, w_roi, h_roi) = roi_bbox | |
roi_area = w_roi * h_roi | |
x_min, y_min = int(min(b[0] for b in bbox)), int(min(b[1] for b in bbox)) | |
x_max, y_max = int(max(b[0] for b in bbox)), int(max(b[1] for b in bbox)) | |
bbox_area = (x_max - x_min) * (y_max - y_min) | |
if roi_area > 0 and bbox_area / roi_area < 0.05: | |
score *= 0.6 | |
if score > best_score and conf > conf_threshold: | |
best_weight = text | |
best_conf = conf | |
best_score = score | |
logging.info(f"Candidate EasyOCR weight: '{text}', Unit: {unit or 'none'}, Conf: {conf}, Score: {score}") | |
except ValueError: | |
logging.warning(f"Could not convert '{text}' to float during EasyOCR fallback.") | |
continue | |
if not best_weight: | |
logging.info("No valid weight detected after all attempts.") | |
return "Not detected", 0.0 | |
# Format the weight | |
if "." in best_weight: | |
int_part, dec_part = best_weight.split(".") | |
int_part = int_part.lstrip("0") or "0" | |
dec_part = dec_part.rstrip('0') | |
best_weight = f"{int_part}.{dec_part}" if dec_part else int_part | |
else: | |
best_weight = best_weight.lstrip('0') or "0" | |
try: | |
final_weight = float(best_weight) | |
if final_weight < 0.001 or final_weight > 1000: | |
best_conf *= 0.7 | |
except ValueError: | |
pass | |
logging.info(f"Final detected weight: {best_weight} kg, Confidence: {round(best_conf * 100, 2)}%") | |
return best_weight, round(best_conf * 100, 2) | |
except Exception as e: | |
logging.error(f"Weight extraction failed unexpectedly: {str(e)}") | |
return "Not detected", 0.0 |