Spaces:
Running
Running
File size: 17,528 Bytes
975f9c6 5234a64 d373620 5234a64 9ac49a2 5234a64 9ac49a2 5234a64 d373620 9ac49a2 d373620 0f29b7c c320b80 0f29b7c 9ac49a2 d373620 c320b80 373b0d2 c320b80 3137c41 373b0d2 c320b80 3137c41 c320b80 9ac49a2 c320b80 5234a64 3137c41 c320b80 373b0d2 9ac49a2 373b0d2 c320b80 373b0d2 3137c41 9ac49a2 c320b80 373b0d2 c320b80 3137c41 9ac49a2 c320b80 9ac49a2 373b0d2 3137c41 373b0d2 c320b80 9ac49a2 373b0d2 c320b80 3137c41 c320b80 3137c41 c320b80 9ac49a2 373b0d2 3137c41 373b0d2 3137c41 373b0d2 3137c41 373b0d2 9ac49a2 3137c41 9ac49a2 5234a64 9ac49a2 3137c41 9ac49a2 373b0d2 c320b80 9ac49a2 3137c41 4c95d04 fcdea18 9ac49a2 373b0d2 9ac49a2 5234a64 9ac49a2 3137c41 975f9c6 9ac49a2 4c95d04 9ac49a2 3137c41 c320b80 9ac49a2 d373620 9ac49a2 c320b80 9ac49a2 c320b80 9ac49a2 c320b80 3137c41 c320b80 3137c41 d373620 373b0d2 d373620 c320b80 373b0d2 753fcb8 9ac49a2 753fcb8 9ac49a2 753fcb8 9ac49a2 3137c41 9ac49a2 753fcb8 9ac49a2 3137c41 c320b80 9ac49a2 373b0d2 c320b80 753fcb8 9ac49a2 753fcb8 9ac49a2 373b0d2 9ac49a2 373b0d2 9ac49a2 975f9c6 9ac49a2 c320b80 9ac49a2 c320b80 9ac49a2 3137c41 373b0d2 9ac49a2 373b0d2 3137c41 b613b80 373b0d2 9ac49a2 c320b80 3137c41 c320b80 9ac49a2 c320b80 9ac49a2 c320b80 373b0d2 3137c41 373b0d2 c320b80 9ac49a2 373b0d2 c320b80 b613b80 3137c41 b613b80 3137c41 b613b80 3137c41 b613b80 3137c41 b613b80 3137c41 b613b80 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 |
import easyocr
import numpy as np
import cv2
import re
import logging
from datetime import datetime
import os
# Set up logging for debugging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# Initialize EasyOCR
easyocr_reader = easyocr.Reader(['en'], gpu=False)
# Directory for debug images
DEBUG_DIR = "debug_images"
os.makedirs(DEBUG_DIR, exist_ok=True)
def save_debug_image(img, filename_suffix, prefix=""):
"""Saves an image to the debug directory with a timestamp."""
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
filename = os.path.join(DEBUG_DIR, f"{prefix}{timestamp}_{filename_suffix}.png")
if len(img.shape) == 3: # Color image
cv2.imwrite(filename, img)
else: # Grayscale image
cv2.imwrite(filename, img)
logging.info(f"Saved debug image: {filename}")
def estimate_brightness(img):
"""Estimate image brightness to detect illuminated displays."""
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
return np.mean(gray)
def preprocess_image(img):
"""Preprocess image for better OCR accuracy."""
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Apply bilateral filter to preserve edges
denoised = cv2.bilateralFilter(gray, 11, 17, 17)
save_debug_image(denoised, "01_preprocess_bilateral")
# Enhance contrast using CLAHE
clahe = cv2.createCLAHE(clipLimit=2.5, tileGridSize=(8, 8))
enhanced = clahe.apply(denoised)
save_debug_image(enhanced, "02_preprocess_clahe")
# Sharpen the image
kernel_sharpening = np.array([[-1, -1, -1], [-1, 9, -1], [-1, -1, -1]])
sharpened = cv2.filter2D(enhanced, -1, kernel_sharpening)
save_debug_image(sharpened, "03_preprocess_sharpened")
return sharpened
def correct_rotation(img):
"""Correct image rotation using Hough Transform."""
try:
edges = cv2.Canny(cv2.cvtColor(img, cv2.COLOR_BGR2GRAY), 100, 200)
lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=100, minLineLength=100, maxLineGap=10)
if lines is not None:
angles = [np.arctan2(line[0][3] - line[0][1], line[0][2] - line[0][0]) * 180 / np.pi for line in lines]
angle = np.median(angles) # Use median for robustness
if abs(angle) > 5:
(h, w) = img.shape[:2]
center = (w // 2, h // 2)
M = cv2.getRotationMatrix2D(center, angle, 1.0)
img = cv2.warpAffine(img, M, (w, h))
save_debug_image(img, "00_rotated_image")
logging.info(f"Applied rotation correction: {angle:.2f} degrees")
return img
except Exception as e:
logging.error(f"Rotation correction failed: {str(e)}")
return img
def detect_roi(img):
"""Detect and crop the region of interest (likely the digital display)."""
try:
save_debug_image(img, "04_original")
preprocessed = preprocess_image(img)
brightness_map = cv2.GaussianBlur(cv2.cvtColor(img, cv2.COLOR_BGR2GRAY), (15, 15), 0)
# Dynamic adaptive thresholding
block_size = max(11, min(31, int(img.shape[0] / 20) * 2 + 1))
thresh = cv2.adaptiveThreshold(preprocessed, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY_INV, block_size, 5)
_, otsu_thresh = cv2.threshold(preprocessed, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
combined_thresh = cv2.bitwise_and(thresh, otsu_thresh)
save_debug_image(combined_thresh, "05_roi_combined_threshold")
# Morphological operations to connect digits
kernel = np.ones((5, 5), np.uint8)
dilated = cv2.dilate(combined_thresh, kernel, iterations=2)
eroded = cv2.erode(dilated, kernel, iterations=1)
save_debug_image(eroded, "06_roi_morphological")
contours, _ = cv2.findContours(eroded, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if contours:
img_area = img.shape[0] * img.shape[1]
valid_contours = []
for c in contours:
area = cv2.contourArea(c)
x, y, w, h = cv2.boundingRect(c)
roi_brightness = np.mean(brightness_map[y:y+h, x:x+w])
aspect_ratio = w / h
if (500 < area < (img_area * 0.9) and
0.8 <= aspect_ratio <= 12.0 and w > 60 and h > 30 and roi_brightness > 80):
valid_contours.append((c, roi_brightness))
logging.debug(f"Contour: Area={area}, Aspect={aspect_ratio:.2f}, Brightness={roi_brightness:.2f}")
if valid_contours:
contour, _ = max(valid_contours, key=lambda x: x[1]) # Max brightness
x, y, w, h = cv2.boundingRect(contour)
padding = 100
x, y = max(0, x - padding), max(0, y - padding)
w, h = min(w + 2 * padding, img.shape[1] - x), min(h + 2 * padding, img.shape[0] - y)
roi_img = img[y:y+h, x:x+w]
save_debug_image(roi_img, "07_detected_roi")
logging.info(f"Detected ROI with dimensions: ({x}, {y}, {w}, {h})")
return roi_img, (x, y, w, h)
logging.info("No suitable ROI found, attempting fallback criteria.")
# Fallback with relaxed criteria
valid_contours = [c for c in contours if 300 < cv2.contourArea(c) < (img_area * 0.95) and
0.5 <= cv2.boundingRect(c)[2]/cv2.boundingRect(c)[3] <= 15.0]
if valid_contours:
contour = max(valid_contours, key=cv2.contourArea)
x, y, w, h = cv2.boundingRect(contour)
padding = 100
x, y = max(0, x - padding), max(0, y - padding)
w, h = min(w + 2 * padding, img.shape[1] - x), min(h + 2 * padding, img.shape[0] - y)
roi_img = img[y:y+h, x:x+w]
save_debug_image(roi_img, "07_detected_roi_fallback")
logging.info(f"Detected fallback ROI with dimensions: ({x}, {y}, {w}, {h})")
return roi_img, (x, y, w, h)
logging.info("No suitable ROI found, returning original image.")
save_debug_image(img, "07_no_roi_original_fallback")
return img, None
except Exception as e:
logging.error(f"ROI detection failed: {str(e)}")
save_debug_image(img, "07_roi_detection_error_fallback")
return img, None
def detect_segments(digit_img, brightness):
"""Detect seven-segment patterns in a digit image."""
h, w = digit_img.shape
if h < 15 or w < 10:
return None
segments = {
'top': (int(w*0.15), int(w*0.85), 0, int(h*0.2)),
'middle': (int(w*0.15), int(w*0.85), int(h*0.45), int(h*0.55)),
'bottom': (int(w*0.15), int(w*0.85), int(h*0.8), h),
'left_top': (0, int(w*0.25), int(h*0.15), int(h*0.5)),
'left_bottom': (0, int(w*0.25), int(h*0.5), int(h*0.85)),
'right_top': (int(w*0.75), w, int(h*0.15), int(h*0.5)),
'right_bottom': (int(w*0.75), w, int(h*0.5), int(h*0.85))
}
segment_presence = {}
for name, (x1, x2, y1, y2) in segments.items():
x1, y1 = max(0, x1), max(0, y1)
x2, y2 = min(w, x2), min(h, y2)
region = digit_img[y1:y2, x1:x2]
if region.size == 0:
segment_presence[name] = False
continue
pixel_count = np.sum(region == 255)
total_pixels = region.size
segment_presence[name] = pixel_count / total_pixels > (0.25 if brightness < 100 else 0.45)
digit_patterns = {
'0': ('top', 'bottom', 'left_top', 'left_bottom', 'right_top', 'right_bottom'),
'1': ('right_top', 'right_bottom'),
'2': ('top', 'middle', 'bottom', 'left_bottom', 'right_top'),
'3': ('top', 'middle', 'bottom', 'right_top', 'right_bottom'),
'4': ('middle', 'left_top', 'right_top', 'right_bottom'),
'5': ('top', 'middle', 'bottom', 'left_top', 'right_bottom'),
'6': ('top', 'middle', 'bottom', 'left_top', 'left_bottom', 'right_bottom'),
'7': ('top', 'right_top', 'right_bottom'),
'8': ('top', 'middle', 'bottom', 'left_top', 'left_bottom', 'right_top', 'right_bottom'),
'9': ('top', 'middle', 'bottom', 'left_top', 'right_top', 'right_bottom')
}
best_match = None
max_score = -1
for digit, pattern in digit_patterns.items():
matches = sum(1 for segment in pattern if segment_presence.get(segment, False))
non_matches_penalty = sum(1 for segment in segment_presence if segment not in pattern and segment_presence[segment])
score = matches - 0.2 * non_matches_penalty
if matches >= len(pattern) * 0.75:
score += 1.0
if score > max_score:
max_score = score
best_match = digit
logging.debug(f"Segment presence: {segment_presence}, Detected digit: {best_match}")
return best_match
def custom_seven_segment_ocr(img, roi_bbox):
"""Perform custom OCR for seven-segment displays."""
try:
preprocessed = preprocess_image(img)
brightness = estimate_brightness(img)
thresh_value = 100 if brightness < 100 else 0
_, thresh = cv2.threshold(preprocessed, thresh_value, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
save_debug_image(thresh, "08_roi_thresh_for_digits")
# Morphological operations to enhance digit segments
kernel = np.ones((3, 3), np.uint8)
thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=2)
save_debug_image(thresh, "09_morph_closed")
batch_size = max(4, min(16, int(img.shape[0] * img.shape[1] / 100000)))
results = easyocr_reader.readtext(thresh, detail=1, paragraph=False,
contrast_ths=0.3, adjust_contrast=1.0,
text_threshold=0.6, mag_ratio=3.0,
allowlist='0123456789.', batch_size=batch_size, y_ths=0.2)
logging.info(f"EasyOCR results: {results}")
if not results:
logging.info("EasyOCR found no digits.")
return None
digits_info = []
for (bbox, text, conf) in results:
(x1, y1), (x2, y2), (x3, y3), (x4, y4) = bbox
h_bbox = max(y1, y2, y3, y4) - min(y1, y2, y3, y4)
if len(text) == 1 and (text.isdigit() or text == '.') and h_bbox > 8:
x_min, x_max = int(min(x1, x4)), int(max(x2, x3))
y_min, y_max = int(min(y1, y2)), int(max(y3, y4))
digits_info.append((x_min, x_max, y_min, y_max, text, conf))
digits_info.sort(key=lambda x: x[0])
recognized_text = ""
for idx, (x_min, x_max, y_min, y_max, easyocr_char, easyocr_conf) in enumerate(digits_info):
x_min, y_min = max(0, x_min), max(0, y_min)
x_max, y_max = min(thresh.shape[1], x_max), min(thresh.shape[0], y_max)
if x_max <= x_min or y_max <= y_min:
continue
digit_img_crop = thresh[y_min:y_max, x_min:x_max]
save_debug_image(digit_img_crop, f"10_digit_crop_{idx}_{easyocr_char}")
if easyocr_conf > 0.95 or easyocr_char == '.':
recognized_text += easyocr_char
else:
digit_from_segments = detect_segments(digit_img_crop, brightness)
recognized_text += digit_from_segments if digit_from_segments else easyocr_char
logging.info(f"Before validation, recognized_text: {recognized_text}")
text = re.sub(r"[^\d\.]", "", recognized_text)
if text.count('.') > 1:
text = text.replace('.', '', text.count('.') - 1)
if text and re.fullmatch(r"^\d*\.?\d*$", text):
text = text.strip('.')
if text == '':
return None
return text.lstrip('0') or '0'
logging.info(f"Custom OCR text '{recognized_text}' failed validation.")
return None
except Exception as e:
logging.error(f"Custom seven-segment OCR failed: {str(e)}")
return None
def extract_weight_from_image(pil_img):
"""Extract weight from a PIL image of a digital scale display."""
try:
img = np.array(pil_img)
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
save_debug_image(img, "00_input_image")
# Apply rotation correction
img = correct_rotation(img)
brightness = estimate_brightness(img)
conf_threshold = 0.7 if brightness > 150 else (0.6 if brightness > 80 else 0.4)
roi_img, roi_bbox = detect_roi(img)
if roi_bbox:
roi_area = roi_bbox[2] * roi_bbox[3]
conf_threshold *= 1.2 if roi_area > (img.shape[0] * img.shape[1] * 0.5) else 1.0
custom_result = custom_seven_segment_ocr(roi_img, roi_bbox)
if custom_result:
try:
weight = float(custom_result)
if 0.001 <= weight <= 1000:
logging.info(f"Custom OCR result: {custom_result}, Confidence: 95.0%")
return custom_result, 95.0
else:
logging.warning(f"Custom OCR result {custom_result} outside typical weight range.")
except ValueError:
logging.warning(f"Custom OCR result '{custom_result}' is not a valid number.")
logging.info("Custom OCR failed or invalid, falling back to enhanced EasyOCR.")
preprocessed_roi = preprocess_image(roi_img)
block_size = max(11, min(31, int(roi_img.shape[0] / 20) * 2 + 1))
final_roi = cv2.adaptiveThreshold(preprocessed_roi, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY_INV, block_size, 8)
save_debug_image(final_roi, "11_fallback_adaptive_thresh")
batch_size = max(4, min(16, int(roi_img.shape[0] * roi_img.shape[1] / 100000)))
results = easyocr_reader.readtext(final_roi, detail=1, paragraph=False,
contrast_ths=0.4, adjust_contrast=1.2,
text_threshold=0.5, mag_ratio=4.0,
allowlist='0123456789. kglb', batch_size=batch_size, y_ths=0.2)
best_weight = None
best_conf = 0.0
best_score = 0.0
unit = None
for (bbox, text, conf) in results:
if 'kg' in text.lower():
unit = 'kg'
continue
elif 'g' in text.lower():
unit = 'g'
continue
elif 'lb' in text.lower():
unit = 'lb'
continue
text = re.sub(r"[^\d\.]", "", text)
if text.count('.') > 1:
text = text.replace('.', '', text.count('.') - 1)
text = text.strip('.')
if re.fullmatch(r"^\d*\.?\d*$", text):
try:
weight = float(text)
if unit == 'g':
weight /= 1000 # Convert grams to kilograms
elif unit == 'lb':
weight *= 0.453592 # Convert pounds to kilograms
range_score = 1.5 if 0.001 <= weight <= 1000 else 0.8
digit_count = len(text.replace('.', ''))
digit_score = 1.3 if 2 <= digit_count <= 7 else 0.9
score = conf * range_score * digit_score
if roi_bbox:
(x_roi, y_roi, w_roi, h_roi) = roi_bbox
roi_area = w_roi * h_roi
x_min, y_min = int(min(b[0] for b in bbox)), int(min(b[1] for b in bbox))
x_max, y_max = int(max(b[0] for b in bbox)), int(max(b[1] for b in bbox))
bbox_area = (x_max - x_min) * (y_max - y_min)
if roi_area > 0 and bbox_area / roi_area < 0.05:
score *= 0.6
if score > best_score and conf > conf_threshold:
best_weight = text
best_conf = conf
best_score = score
logging.info(f"Candidate EasyOCR weight: '{text}', Unit: {unit or 'none'}, Conf: {conf}, Score: {score}")
except ValueError:
logging.warning(f"Could not convert '{text}' to float during EasyOCR fallback.")
continue
if not best_weight:
logging.info("No valid weight detected after all attempts.")
return "Not detected", 0.0
# Format the weight
if "." in best_weight:
int_part, dec_part = best_weight.split(".")
int_part = int_part.lstrip("0") or "0"
dec_part = dec_part.rstrip('0')
best_weight = f"{int_part}.{dec_part}" if dec_part else int_part
else:
best_weight = best_weight.lstrip('0') or "0"
try:
final_weight = float(best_weight)
if final_weight < 0.001 or final_weight > 1000:
best_conf *= 0.7
except ValueError:
pass
logging.info(f"Final detected weight: {best_weight} kg, Confidence: {round(best_conf * 100, 2)}%")
return best_weight, round(best_conf * 100, 2)
except Exception as e:
logging.error(f"Weight extraction failed unexpectedly: {str(e)}")
return "Not detected", 0.0 |