Spaces:
Running
Running
import easyocr | |
import numpy as np | |
import cv2 | |
import re | |
import logging | |
from datetime import datetime | |
import os | |
from PIL import Image, ImageEnhance | |
# Set up logging for detailed debugging | |
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s') | |
# Initialize EasyOCR with English and GPU disabled (enable if you have a compatible GPU) | |
easyocr_reader = easyocr.Reader(['en'], gpu=False) | |
# Directory for debug images | |
DEBUG_DIR = "debug_images" | |
os.makedirs(DEBUG_DIR, exist_ok=True) | |
def save_debug_image(img, filename_suffix, prefix=""): | |
"""Saves an image to the debug directory with a timestamp.""" | |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f") | |
filename = os.path.join(DEBUG_DIR, f"{prefix}{timestamp}_{filename_suffix}.png") | |
if len(img.shape) == 3: # Color image | |
cv2.imwrite(filename, img) | |
else: # Grayscale image | |
cv2.imwrite(filename, img) | |
logging.debug(f"Saved debug image: {filename}") | |
def estimate_brightness(img): | |
"""Estimate image brightness to detect illuminated displays""" | |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) | |
brightness = np.mean(gray) | |
logging.debug(f"Estimated brightness: {brightness}") | |
return brightness | |
def preprocess_image(img): | |
"""Enhance contrast, brightness, and reduce noise for better digit detection""" | |
# Convert to PIL for initial enhancement | |
pil_img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) | |
pil_img = ImageEnhance.Contrast(pil_img).enhance(2.0) # Stronger contrast | |
pil_img = ImageEnhance.Brightness(pil_img).enhance(1.3) # Moderate brightness boost | |
img = cv2.cvtColor(np.array(pil_img), cv2.COLOR_RGB2BGR) | |
save_debug_image(img, "00_preprocessed_pil") | |
# Apply CLAHE to enhance local contrast | |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) | |
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8)) | |
enhanced = clahe.apply(gray) | |
save_debug_image(enhanced, "00_clahe_enhanced") | |
# Apply bilateral filter to reduce noise while preserving edges | |
filtered = cv2.bilateralFilter(enhanced, d=11, sigmaColor=100, sigmaSpace=100) | |
save_debug_image(filtered, "00_bilateral_filtered") | |
return filtered | |
def detect_roi(img): | |
"""Detect and crop the region of interest (likely the digital display)""" | |
try: | |
save_debug_image(img, "01_original") | |
gray = preprocess_image(img) | |
save_debug_image(gray, "02_preprocessed_grayscale") | |
# Try multiple thresholding methods | |
brightness = estimate_brightness(img) | |
if brightness > 150: | |
thresh = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, | |
cv2.THRESH_BINARY, 31, 5) | |
save_debug_image(thresh, "03_roi_adaptive_threshold_high") | |
else: | |
_, thresh = cv2.threshold(gray, 40, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) | |
save_debug_image(thresh, "03_roi_otsu_threshold_low") | |
# Morphological operations to clean up noise and connect digits | |
kernel = np.ones((5, 5), np.uint8) | |
thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=2) | |
save_debug_image(thresh, "03_roi_morph_cleaned") | |
kernel = np.ones((11, 11), np.uint8) | |
dilated = cv2.dilate(thresh, kernel, iterations=5) | |
save_debug_image(dilated, "04_roi_dilated") | |
contours, _ = cv2.findContours(dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) | |
if contours: | |
img_area = img.shape[0] * img.shape[1] | |
valid_contours = [] | |
for c in contours: | |
area = cv2.contourArea(c) | |
if 200 < area < (img_area * 0.99): # Very relaxed area filter | |
x, y, w, h = cv2.boundingRect(c) | |
aspect_ratio = w / h if h > 0 else 0 | |
if 0.5 <= aspect_ratio <= 10.0 and w > 30 and h > 20: # Very relaxed filters | |
valid_contours.append(c) | |
if valid_contours: | |
contour = max(valid_contours, key=cv2.contourArea) # Largest contour | |
x, y, w, h = cv2.boundingRect(contour) | |
padding = 100 # Generous padding | |
x, y = max(0, x - padding), max(0, y - padding) | |
w, h = min(w + 2 * padding, img.shape[1] - x), min(h + 2 * padding, img.shape[0] - y) | |
roi_img = img[y:y+h, x:x+w] | |
save_debug_image(roi_img, "05_detected_roi") | |
logging.info(f"Detected ROI with dimensions: ({x}, {y}, {w}, {h})") | |
return roi_img, (x, y, w, h) | |
logging.info("No suitable ROI found, returning preprocessed image.") | |
save_debug_image(img, "05_no_roi_original_fallback") | |
return img, None | |
except Exception as e: | |
logging.error(f"ROI detection failed: {str(e)}") | |
save_debug_image(img, "05_roi_detection_error_fallback") | |
return img, None | |
def detect_segments(digit_img): | |
"""Detect seven-segment patterns in a digit image""" | |
h, w = digit_img.shape | |
if h < 8 or w < 4: # Very relaxed size constraints | |
logging.debug(f"Digit image too small: {w}x{h}") | |
return None | |
segments = { | |
'top': (int(w*0.1), int(w*0.9), 0, int(h*0.25)), | |
'middle': (int(w*0.1), int(w*0.9), int(h*0.35), int(h*0.65)), | |
'bottom': (int(w*0.1), int(w*0.9), int(h*0.75), h), | |
'left_top': (0, int(w*0.3), int(h*0.05), int(h*0.55)), | |
'left_bottom': (0, int(w*0.3), int(h*0.45), int(h*0.95)), | |
'right_top': (int(w*0.7), w, int(h*0.05), int(h*0.55)), | |
'right_bottom': (int(w*0.7), w, int(h*0.45), int(h*0.95)) | |
} | |
segment_presence = {} | |
for name, (x1, x2, y1, y2) in segments.items(): | |
x1, y1 = max(0, x1), max(0, y1) | |
x2, y2 = min(w, x2), min(h, y2) | |
region = digit_img[y1:y2, x1:x2] | |
if region.size == 0: | |
segment_presence[name] = False | |
continue | |
pixel_count = np.sum(region == 255) | |
total_pixels = region.size | |
segment_presence[name] = pixel_count / total_pixels > 0.3 # Very low threshold | |
logging.debug(f"Segment {name}: {pixel_count}/{total_pixels} = {pixel_count/total_pixels:.2f}") | |
digit_patterns = { | |
'0': ('top', 'bottom', 'left_top', 'left_bottom', 'right_top', 'right_bottom'), | |
'1': ('right_top', 'right_bottom'), | |
'2': ('top', 'middle', 'bottom', 'left_bottom', 'right_top'), | |
'3': ('top', 'middle', 'bottom', 'right_top', 'right_bottom'), | |
'4': ('middle', 'left_top', 'right_top', 'right_bottom'), | |
'5': ('top', 'middle', 'bottom', 'left_top', 'right_bottom'), | |
'6': ('top', 'middle', 'bottom', 'left_top', 'left_bottom', 'right_bottom'), | |
'7': ('top', 'right_top', 'right_bottom'), | |
'8': ('top', 'middle', 'bottom', 'left_top', 'left_bottom', 'right_top', 'right_bottom'), | |
'9': ('top', 'middle', 'bottom', 'left_top', 'right_top', 'right_bottom') | |
} | |
best_match = None | |
max_score = -1 | |
for digit, pattern in digit_patterns.items(): | |
matches = sum(1 for segment in pattern if segment_presence.get(segment, False)) | |
non_matches_penalty = sum(1 for segment in segment_presence if segment not in pattern and segment_presence[segment]) | |
current_score = matches - non_matches_penalty | |
if all(segment_presence.get(s, False) for s in pattern): | |
current_score += 0.5 | |
if current_score > max_score: | |
max_score = current_score | |
best_match = digit | |
elif current_score == max_score and best_match is not None: | |
current_digit_non_matches = sum(1 for segment in segment_presence if segment not in pattern and segment_presence[segment]) | |
best_digit_pattern = digit_patterns[best_match] | |
best_digit_non_matches = sum(1 for segment in segment_presence if segment not in best_digit_pattern and segment_presence[segment]) | |
if current_digit_non_matches < best_digit_non_matches: | |
best_match = digit | |
logging.debug(f"Segment presence: {segment_presence}, Detected digit: {best_match}") | |
return best_match | |
def custom_seven_segment_ocr(img, roi_bbox): | |
"""Perform custom OCR for seven-segment displays""" | |
try: | |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) | |
brightness = estimate_brightness(img) | |
# Try multiple thresholding approaches | |
if brightness > 150: | |
_, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) | |
save_debug_image(thresh, "06_roi_otsu_threshold") | |
else: | |
_, thresh = cv2.threshold(gray, 30, 255, cv2.THRESH_BINARY) | |
save_debug_image(thresh, "06_roi_simple_threshold") | |
# Morphological cleaning | |
kernel = np.ones((3, 3), np.uint8) | |
thresh = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=1) | |
save_debug_image(thresh, "06_roi_morph_cleaned") | |
results = easyocr_reader.readtext(thresh, detail=1, paragraph=False, | |
contrast_ths=0.1, adjust_contrast=1.0, | |
text_threshold=0.3, mag_ratio=4.0, | |
allowlist='0123456789.-', y_ths=0.6) | |
logging.info(f"Custom OCR EasyOCR results: {results}") | |
if not results: | |
logging.info("Custom OCR EasyOCR found no digits.") | |
return None | |
digits_info = [] | |
for (bbox, text, conf) in results: | |
(x1, y1), (x2, y2), (x3, y3), (x4, y4) = bbox | |
h_bbox = max(y1, y2, y3, y4) - min(y1, y2, y3, y4) | |
if len(text) == 1 and (text.isdigit() or text in '.-') and h_bbox > 4: | |
x_min, x_max = int(min(x1, x4)), int(max(x2, x3)) | |
y_min, y_max = int(min(y1, y2)), int(max(y3, y4)) | |
digits_info.append((x_min, x_max, y_min, y_max, text, conf)) | |
digits_info.sort(key=lambda x: x[0]) | |
recognized_text = "" | |
for idx, (x_min, x_max, y_min, y_max, easyocr_char, easyocr_conf) in enumerate(digits_info): | |
x_min, y_min = max(0, x_min), max(0, y_min) | |
x_max, y_max = min(thresh.shape[1], x_max), min(thresh.shape[0], y_max) | |
if x_max <= x_min or y_max <= y_min: | |
continue | |
digit_img_crop = thresh[y_min:y_max, x_min:x_max] | |
save_debug_image(digit_img_crop, f"07_digit_crop_{idx}_{easyocr_char}") | |
if easyocr_conf > 0.8 or easyocr_char in '.-' or digit_img_crop.shape[0] < 8 or digit_img_crop.shape[1] < 4: | |
recognized_text += easyocr_char | |
else: | |
digit_from_segments = detect_segments(digit_img_crop) | |
if digit_from_segments: | |
recognized_text += digit_from_segments | |
else: | |
recognized_text += easyocr_char | |
logging.info(f"Custom OCR before validation, recognized_text: {recognized_text}") | |
# Relaxed validation for debugging | |
if recognized_text: | |
return recognized_text | |
logging.info(f"Custom OCR text '{recognized_text}' failed validation.") | |
return None | |
except Exception as e: | |
logging.error(f"Custom seven-segment OCR failed: {str(e)}") | |
return None | |
def extract_weight_from_image(pil_img): | |
"""Extract weight from a PIL image of a digital scale display""" | |
try: | |
img = np.array(pil_img) | |
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) | |
save_debug_image(img, "00_input_image") | |
brightness = estimate_brightness(img) | |
conf_threshold = 0.3 if brightness > 150 else (0.2 if brightness > 80 else 0.1) | |
roi_img, roi_bbox = detect_roi(img) | |
custom_result = custom_seven_segment_ocr(roi_img, roi_bbox) | |
if custom_result: | |
# Basic cleaning | |
text = re.sub(r"[^\d\.\-]", "", custom_result) # Allow negative signs | |
if text.count('.') > 1: | |
text = text.replace('.', '', text.count('.') - 1) | |
if text: | |
if text.startswith('.'): | |
text = "0" + text | |
if text.endswith('.'): | |
text = text.rstrip('.') | |
if text == '.' or text == '': | |
logging.warning(f"Custom OCR result '{text}' is invalid after cleaning.") | |
else: | |
try: | |
float(text) | |
logging.info(f"Custom OCR result: {text}, Confidence: 100.0%") | |
return text, 100.0 | |
except ValueError: | |
logging.warning(f"Custom OCR result '{text}' is not a valid number, falling back.") | |
logging.warning(f"Custom OCR result '{custom_result}' failed validation, falling back.") | |
logging.info("Custom OCR failed or invalid, falling back to general EasyOCR.") | |
processed_roi_img = preprocess_image(roi_img) | |
# Try multiple thresholding approaches | |
if brightness > 150: | |
thresh = cv2.adaptiveThreshold(processed_roi_img, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, | |
cv2.THRESH_BINARY, 41, 7) | |
save_debug_image(thresh, "09_fallback_adaptive_thresh") | |
else: | |
_, thresh = cv2.threshold(processed_roi_img, 30, 255, cv2.THRESH_BINARY) | |
save_debug_image(thresh, "09_fallback_simple_thresh") | |
# Morphological cleaning | |
kernel = np.ones((3, 3), np.uint8) | |
thresh = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=1) | |
save_debug_image(thresh, "09_fallback_morph_cleaned") | |
results = easyocr_reader.readtext(thresh, detail=1, paragraph=False, | |
contrast_ths=0.1, adjust_contrast=1.0, | |
text_threshold=0.2, mag_ratio=5.0, | |
allowlist='0123456789.-', batch_size=4, y_ths=0.6) | |
best_weight = None | |
best_conf = 0.0 | |
best_score = 0.0 | |
for (bbox, text, conf) in results: | |
logging.info(f"Fallback EasyOCR raw text: {text}, Confidence: {conf}") | |
text = text.lower().strip() | |
text = text.replace(",", ".").replace(";", ".").replace(":", ".").replace(" ", "") | |
text = text.replace("o", "0").replace("O", "0").replace("q", "0").replace("Q", "0") | |
text = text.replace("s", "5").replace("S", "5") | |
text = text.replace("g", "9").replace("G", "6") | |
text = text.replace("l", "1").replace("I", "1").replace("|", "1") | |
text = text.replace("b", "8").replace("B", "8") | |
text = text.replace("z", "2").replace("Z", "2") | |
text = text.replace("a", "4").replace("A", "4") | |
text = text.replace("e", "3") | |
text = text.replace("t", "7") | |
text = text.replace("~", "").replace("`", "") | |
text = re.sub(r"(kgs|kg|k|lb|g|gr|pounds|lbs)\b", "", text) | |
text = re.sub(r"[^\d\.\-]", "", text) | |
if text.count('.') > 1: | |
parts = text.split('.') | |
text = parts[0] + '.' + ''.join(parts[1:]) | |
text = text.strip('.') | |
if len(text.replace('.', '').replace('-', '')) > 0: # Allow negative weights | |
try: | |
weight = float(text) | |
range_score = 1.0 | |
if 0.0 <= weight <= 250: | |
range_score = 1.5 | |
elif weight > 250 and weight <= 500: | |
range_score = 1.2 | |
elif weight > 500 and weight <= 1000: | |
range_score = 1.0 | |
else: | |
range_score = 0.5 | |
digit_count = len(text.replace('.', '').replace('-', '')) | |
digit_score = 1.0 | |
if digit_count >= 2 and digit_count <= 5: | |
digit_score = 1.3 | |
elif digit_count == 1: | |
digit_score = 0.8 | |
score = conf * range_score * digit_score | |
if roi_bbox: | |
(x_roi, y_roi, w_roi, h_roi) = roi_bbox | |
roi_area = w_roi * h_roi | |
x_min, y_min = int(min(b[0] for b in bbox)), int(min(b[1] for b in bbox)) | |
x_max, y_max = int(max(b[0] for b in bbox)), int(max(b[1] for b in bbox)) | |
bbox_area = (x_max - x_min) * (y_max - y_min) | |
if roi_area > 0 and bbox_area / roi_area < 0.02: | |
score *= 0.5 | |
bbox_aspect_ratio = (x_max - x_min) / (y_max - y_min) if (y_max - y_min) > 0 else 0 | |
if bbox_aspect_ratio < 0.1: | |
score *= 0.7 | |
if score > best_score and conf > conf_threshold: | |
best_weight = text | |
best_conf = conf | |
best_score = score | |
logging.info(f"Candidate EasyOCR weight: '{text}', Conf: {conf}, Score: {score}") | |
except ValueError: | |
logging.warning(f"Could not convert '{text}' to float during EasyOCR fallback.") | |
continue | |
if not best_weight: | |
logging.info("No valid weight detected after all attempts.") | |
return "Not detected", 0.0 | |
if "." in best_weight: | |
int_part, dec_part = best_weight.split(".") | |
int_part = int_part.lstrip("0") or "0" | |
dec_part = dec_part.rstrip('0') | |
if not dec_part and int_part != "0": | |
best_weight = int_part | |
elif not dec_part and int_part == "0": | |
best_weight = "0" | |
else: | |
best_weight = f"{int_part}.{dec_part}" | |
else: | |
best_weight = best_weight.lstrip('0') or "0" | |
try: | |
final_float_weight = float(best_weight) | |
if final_float_weight < 0.0 or final_float_weight > 1000: | |
logging.warning(f"Detected weight {final_float_weight} is outside typical range, reducing confidence.") | |
best_conf *= 0.5 | |
except ValueError: | |
logging.warning(f"Final weight '{best_weight}' is not a valid number.") | |
best_conf *= 0.5 | |
logging.info(f"Final detected weight: {best_weight}, Confidence: {round(best_conf * 100, 2)}%") | |
return best_weight, round(best_conf * 100, 2) | |
except Exception as e: | |
logging.error(f"Weight extraction failed unexpectedly: {str(e)}") | |
return "Not detected", 0.0 |