AutoWeightLogger1 / ocr_engine.py
Sanjayraju30's picture
Update ocr_engine.py
d373620 verified
raw
history blame
18.8 kB
import easyocr
import numpy as np
import cv2
import re
import logging
from datetime import datetime
import os
from PIL import Image, ImageEnhance
# Set up logging for detailed debugging
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
# Initialize EasyOCR with English and GPU disabled (enable if you have a compatible GPU)
easyocr_reader = easyocr.Reader(['en'], gpu=False)
# Directory for debug images
DEBUG_DIR = "debug_images"
os.makedirs(DEBUG_DIR, exist_ok=True)
def save_debug_image(img, filename_suffix, prefix=""):
"""Saves an image to the debug directory with a timestamp."""
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
filename = os.path.join(DEBUG_DIR, f"{prefix}{timestamp}_{filename_suffix}.png")
if len(img.shape) == 3: # Color image
cv2.imwrite(filename, img)
else: # Grayscale image
cv2.imwrite(filename, img)
logging.debug(f"Saved debug image: {filename}")
def estimate_brightness(img):
"""Estimate image brightness to detect illuminated displays"""
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
brightness = np.mean(gray)
logging.debug(f"Estimated brightness: {brightness}")
return brightness
def preprocess_image(img):
"""Enhance contrast, brightness, and reduce noise for better digit detection"""
# Convert to PIL for initial enhancement
pil_img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
pil_img = ImageEnhance.Contrast(pil_img).enhance(2.0) # Stronger contrast
pil_img = ImageEnhance.Brightness(pil_img).enhance(1.3) # Moderate brightness boost
img = cv2.cvtColor(np.array(pil_img), cv2.COLOR_RGB2BGR)
save_debug_image(img, "00_preprocessed_pil")
# Apply CLAHE to enhance local contrast
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
enhanced = clahe.apply(gray)
save_debug_image(enhanced, "00_clahe_enhanced")
# Apply bilateral filter to reduce noise while preserving edges
filtered = cv2.bilateralFilter(enhanced, d=11, sigmaColor=100, sigmaSpace=100)
save_debug_image(filtered, "00_bilateral_filtered")
return filtered
def detect_roi(img):
"""Detect and crop the region of interest (likely the digital display)"""
try:
save_debug_image(img, "01_original")
gray = preprocess_image(img)
save_debug_image(gray, "02_preprocessed_grayscale")
# Try multiple thresholding methods
brightness = estimate_brightness(img)
if brightness > 150:
thresh = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY, 31, 5)
save_debug_image(thresh, "03_roi_adaptive_threshold_high")
else:
_, thresh = cv2.threshold(gray, 40, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
save_debug_image(thresh, "03_roi_otsu_threshold_low")
# Morphological operations to clean up noise and connect digits
kernel = np.ones((5, 5), np.uint8)
thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=2)
save_debug_image(thresh, "03_roi_morph_cleaned")
kernel = np.ones((11, 11), np.uint8)
dilated = cv2.dilate(thresh, kernel, iterations=5)
save_debug_image(dilated, "04_roi_dilated")
contours, _ = cv2.findContours(dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if contours:
img_area = img.shape[0] * img.shape[1]
valid_contours = []
for c in contours:
area = cv2.contourArea(c)
if 200 < area < (img_area * 0.99): # Very relaxed area filter
x, y, w, h = cv2.boundingRect(c)
aspect_ratio = w / h if h > 0 else 0
if 0.5 <= aspect_ratio <= 10.0 and w > 30 and h > 20: # Very relaxed filters
valid_contours.append(c)
if valid_contours:
contour = max(valid_contours, key=cv2.contourArea) # Largest contour
x, y, w, h = cv2.boundingRect(contour)
padding = 100 # Generous padding
x, y = max(0, x - padding), max(0, y - padding)
w, h = min(w + 2 * padding, img.shape[1] - x), min(h + 2 * padding, img.shape[0] - y)
roi_img = img[y:y+h, x:x+w]
save_debug_image(roi_img, "05_detected_roi")
logging.info(f"Detected ROI with dimensions: ({x}, {y}, {w}, {h})")
return roi_img, (x, y, w, h)
logging.info("No suitable ROI found, returning preprocessed image.")
save_debug_image(img, "05_no_roi_original_fallback")
return img, None
except Exception as e:
logging.error(f"ROI detection failed: {str(e)}")
save_debug_image(img, "05_roi_detection_error_fallback")
return img, None
def detect_segments(digit_img):
"""Detect seven-segment patterns in a digit image"""
h, w = digit_img.shape
if h < 8 or w < 4: # Very relaxed size constraints
logging.debug(f"Digit image too small: {w}x{h}")
return None
segments = {
'top': (int(w*0.1), int(w*0.9), 0, int(h*0.25)),
'middle': (int(w*0.1), int(w*0.9), int(h*0.35), int(h*0.65)),
'bottom': (int(w*0.1), int(w*0.9), int(h*0.75), h),
'left_top': (0, int(w*0.3), int(h*0.05), int(h*0.55)),
'left_bottom': (0, int(w*0.3), int(h*0.45), int(h*0.95)),
'right_top': (int(w*0.7), w, int(h*0.05), int(h*0.55)),
'right_bottom': (int(w*0.7), w, int(h*0.45), int(h*0.95))
}
segment_presence = {}
for name, (x1, x2, y1, y2) in segments.items():
x1, y1 = max(0, x1), max(0, y1)
x2, y2 = min(w, x2), min(h, y2)
region = digit_img[y1:y2, x1:x2]
if region.size == 0:
segment_presence[name] = False
continue
pixel_count = np.sum(region == 255)
total_pixels = region.size
segment_presence[name] = pixel_count / total_pixels > 0.3 # Very low threshold
logging.debug(f"Segment {name}: {pixel_count}/{total_pixels} = {pixel_count/total_pixels:.2f}")
digit_patterns = {
'0': ('top', 'bottom', 'left_top', 'left_bottom', 'right_top', 'right_bottom'),
'1': ('right_top', 'right_bottom'),
'2': ('top', 'middle', 'bottom', 'left_bottom', 'right_top'),
'3': ('top', 'middle', 'bottom', 'right_top', 'right_bottom'),
'4': ('middle', 'left_top', 'right_top', 'right_bottom'),
'5': ('top', 'middle', 'bottom', 'left_top', 'right_bottom'),
'6': ('top', 'middle', 'bottom', 'left_top', 'left_bottom', 'right_bottom'),
'7': ('top', 'right_top', 'right_bottom'),
'8': ('top', 'middle', 'bottom', 'left_top', 'left_bottom', 'right_top', 'right_bottom'),
'9': ('top', 'middle', 'bottom', 'left_top', 'right_top', 'right_bottom')
}
best_match = None
max_score = -1
for digit, pattern in digit_patterns.items():
matches = sum(1 for segment in pattern if segment_presence.get(segment, False))
non_matches_penalty = sum(1 for segment in segment_presence if segment not in pattern and segment_presence[segment])
current_score = matches - non_matches_penalty
if all(segment_presence.get(s, False) for s in pattern):
current_score += 0.5
if current_score > max_score:
max_score = current_score
best_match = digit
elif current_score == max_score and best_match is not None:
current_digit_non_matches = sum(1 for segment in segment_presence if segment not in pattern and segment_presence[segment])
best_digit_pattern = digit_patterns[best_match]
best_digit_non_matches = sum(1 for segment in segment_presence if segment not in best_digit_pattern and segment_presence[segment])
if current_digit_non_matches < best_digit_non_matches:
best_match = digit
logging.debug(f"Segment presence: {segment_presence}, Detected digit: {best_match}")
return best_match
def custom_seven_segment_ocr(img, roi_bbox):
"""Perform custom OCR for seven-segment displays"""
try:
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
brightness = estimate_brightness(img)
# Try multiple thresholding approaches
if brightness > 150:
_, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
save_debug_image(thresh, "06_roi_otsu_threshold")
else:
_, thresh = cv2.threshold(gray, 30, 255, cv2.THRESH_BINARY)
save_debug_image(thresh, "06_roi_simple_threshold")
# Morphological cleaning
kernel = np.ones((3, 3), np.uint8)
thresh = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=1)
save_debug_image(thresh, "06_roi_morph_cleaned")
results = easyocr_reader.readtext(thresh, detail=1, paragraph=False,
contrast_ths=0.1, adjust_contrast=1.0,
text_threshold=0.3, mag_ratio=4.0,
allowlist='0123456789.-', y_ths=0.6)
logging.info(f"Custom OCR EasyOCR results: {results}")
if not results:
logging.info("Custom OCR EasyOCR found no digits.")
return None
digits_info = []
for (bbox, text, conf) in results:
(x1, y1), (x2, y2), (x3, y3), (x4, y4) = bbox
h_bbox = max(y1, y2, y3, y4) - min(y1, y2, y3, y4)
if len(text) == 1 and (text.isdigit() or text in '.-') and h_bbox > 4:
x_min, x_max = int(min(x1, x4)), int(max(x2, x3))
y_min, y_max = int(min(y1, y2)), int(max(y3, y4))
digits_info.append((x_min, x_max, y_min, y_max, text, conf))
digits_info.sort(key=lambda x: x[0])
recognized_text = ""
for idx, (x_min, x_max, y_min, y_max, easyocr_char, easyocr_conf) in enumerate(digits_info):
x_min, y_min = max(0, x_min), max(0, y_min)
x_max, y_max = min(thresh.shape[1], x_max), min(thresh.shape[0], y_max)
if x_max <= x_min or y_max <= y_min:
continue
digit_img_crop = thresh[y_min:y_max, x_min:x_max]
save_debug_image(digit_img_crop, f"07_digit_crop_{idx}_{easyocr_char}")
if easyocr_conf > 0.8 or easyocr_char in '.-' or digit_img_crop.shape[0] < 8 or digit_img_crop.shape[1] < 4:
recognized_text += easyocr_char
else:
digit_from_segments = detect_segments(digit_img_crop)
if digit_from_segments:
recognized_text += digit_from_segments
else:
recognized_text += easyocr_char
logging.info(f"Custom OCR before validation, recognized_text: {recognized_text}")
# Relaxed validation for debugging
if recognized_text:
return recognized_text
logging.info(f"Custom OCR text '{recognized_text}' failed validation.")
return None
except Exception as e:
logging.error(f"Custom seven-segment OCR failed: {str(e)}")
return None
def extract_weight_from_image(pil_img):
"""Extract weight from a PIL image of a digital scale display"""
try:
img = np.array(pil_img)
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
save_debug_image(img, "00_input_image")
brightness = estimate_brightness(img)
conf_threshold = 0.3 if brightness > 150 else (0.2 if brightness > 80 else 0.1)
roi_img, roi_bbox = detect_roi(img)
custom_result = custom_seven_segment_ocr(roi_img, roi_bbox)
if custom_result:
# Basic cleaning
text = re.sub(r"[^\d\.\-]", "", custom_result) # Allow negative signs
if text.count('.') > 1:
text = text.replace('.', '', text.count('.') - 1)
if text:
if text.startswith('.'):
text = "0" + text
if text.endswith('.'):
text = text.rstrip('.')
if text == '.' or text == '':
logging.warning(f"Custom OCR result '{text}' is invalid after cleaning.")
else:
try:
float(text)
logging.info(f"Custom OCR result: {text}, Confidence: 100.0%")
return text, 100.0
except ValueError:
logging.warning(f"Custom OCR result '{text}' is not a valid number, falling back.")
logging.warning(f"Custom OCR result '{custom_result}' failed validation, falling back.")
logging.info("Custom OCR failed or invalid, falling back to general EasyOCR.")
processed_roi_img = preprocess_image(roi_img)
# Try multiple thresholding approaches
if brightness > 150:
thresh = cv2.adaptiveThreshold(processed_roi_img, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY, 41, 7)
save_debug_image(thresh, "09_fallback_adaptive_thresh")
else:
_, thresh = cv2.threshold(processed_roi_img, 30, 255, cv2.THRESH_BINARY)
save_debug_image(thresh, "09_fallback_simple_thresh")
# Morphological cleaning
kernel = np.ones((3, 3), np.uint8)
thresh = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=1)
save_debug_image(thresh, "09_fallback_morph_cleaned")
results = easyocr_reader.readtext(thresh, detail=1, paragraph=False,
contrast_ths=0.1, adjust_contrast=1.0,
text_threshold=0.2, mag_ratio=5.0,
allowlist='0123456789.-', batch_size=4, y_ths=0.6)
best_weight = None
best_conf = 0.0
best_score = 0.0
for (bbox, text, conf) in results:
logging.info(f"Fallback EasyOCR raw text: {text}, Confidence: {conf}")
text = text.lower().strip()
text = text.replace(",", ".").replace(";", ".").replace(":", ".").replace(" ", "")
text = text.replace("o", "0").replace("O", "0").replace("q", "0").replace("Q", "0")
text = text.replace("s", "5").replace("S", "5")
text = text.replace("g", "9").replace("G", "6")
text = text.replace("l", "1").replace("I", "1").replace("|", "1")
text = text.replace("b", "8").replace("B", "8")
text = text.replace("z", "2").replace("Z", "2")
text = text.replace("a", "4").replace("A", "4")
text = text.replace("e", "3")
text = text.replace("t", "7")
text = text.replace("~", "").replace("`", "")
text = re.sub(r"(kgs|kg|k|lb|g|gr|pounds|lbs)\b", "", text)
text = re.sub(r"[^\d\.\-]", "", text)
if text.count('.') > 1:
parts = text.split('.')
text = parts[0] + '.' + ''.join(parts[1:])
text = text.strip('.')
if len(text.replace('.', '').replace('-', '')) > 0: # Allow negative weights
try:
weight = float(text)
range_score = 1.0
if 0.0 <= weight <= 250:
range_score = 1.5
elif weight > 250 and weight <= 500:
range_score = 1.2
elif weight > 500 and weight <= 1000:
range_score = 1.0
else:
range_score = 0.5
digit_count = len(text.replace('.', '').replace('-', ''))
digit_score = 1.0
if digit_count >= 2 and digit_count <= 5:
digit_score = 1.3
elif digit_count == 1:
digit_score = 0.8
score = conf * range_score * digit_score
if roi_bbox:
(x_roi, y_roi, w_roi, h_roi) = roi_bbox
roi_area = w_roi * h_roi
x_min, y_min = int(min(b[0] for b in bbox)), int(min(b[1] for b in bbox))
x_max, y_max = int(max(b[0] for b in bbox)), int(max(b[1] for b in bbox))
bbox_area = (x_max - x_min) * (y_max - y_min)
if roi_area > 0 and bbox_area / roi_area < 0.02:
score *= 0.5
bbox_aspect_ratio = (x_max - x_min) / (y_max - y_min) if (y_max - y_min) > 0 else 0
if bbox_aspect_ratio < 0.1:
score *= 0.7
if score > best_score and conf > conf_threshold:
best_weight = text
best_conf = conf
best_score = score
logging.info(f"Candidate EasyOCR weight: '{text}', Conf: {conf}, Score: {score}")
except ValueError:
logging.warning(f"Could not convert '{text}' to float during EasyOCR fallback.")
continue
if not best_weight:
logging.info("No valid weight detected after all attempts.")
return "Not detected", 0.0
if "." in best_weight:
int_part, dec_part = best_weight.split(".")
int_part = int_part.lstrip("0") or "0"
dec_part = dec_part.rstrip('0')
if not dec_part and int_part != "0":
best_weight = int_part
elif not dec_part and int_part == "0":
best_weight = "0"
else:
best_weight = f"{int_part}.{dec_part}"
else:
best_weight = best_weight.lstrip('0') or "0"
try:
final_float_weight = float(best_weight)
if final_float_weight < 0.0 or final_float_weight > 1000:
logging.warning(f"Detected weight {final_float_weight} is outside typical range, reducing confidence.")
best_conf *= 0.5
except ValueError:
logging.warning(f"Final weight '{best_weight}' is not a valid number.")
best_conf *= 0.5
logging.info(f"Final detected weight: {best_weight}, Confidence: {round(best_conf * 100, 2)}%")
return best_weight, round(best_conf * 100, 2)
except Exception as e:
logging.error(f"Weight extraction failed unexpectedly: {str(e)}")
return "Not detected", 0.0