File size: 13,893 Bytes
e58b1c2
975f9c6
 
 
5234a64
d373620
 
e58b1c2
5234a64
8254c9e
9ac49a2
5234a64
d373620
 
 
 
 
8254c9e
d373620
 
e58b1c2
 
 
6ae35d6
8254c9e
d373620
9ac49a2
d373620
0f29b7c
8254c9e
0f29b7c
9ac49a2
d373620
8254c9e
dc1f7da
c320b80
9f46cc7
956dff8
dc1f7da
 
956dff8
9f46cc7
 
956dff8
dc1f7da
 
9f46cc7
956dff8
dc1f7da
 
956dff8
 
dc1f7da
956dff8
 
dc1f7da
 
 
9f46cc7
 
3137c41
 
6ae35d6
3137c41
6ae35d6
dc1f7da
 
3137c41
 
a6294cd
dc1f7da
8254c9e
3137c41
 
 
 
8254c9e
3137c41
 
 
 
c320b80
9ac49a2
dc1f7da
5234a64
6ae35d6
9f46cc7
8254c9e
dc1f7da
ded0d50
 
373b0d2
ded0d50
956dff8
 
dc1f7da
956dff8
dc1f7da
946777c
ded0d50
 
 
8254c9e
 
 
 
 
dc1f7da
 
6ae35d6
ded0d50
 
 
 
 
dc1f7da
ded0d50
 
 
 
 
 
8254c9e
 
ded0d50
9ac49a2
5234a64
9ac49a2
ded0d50
9ac49a2
 
b7eaba3
dc1f7da
ded0d50
 
946777c
4b8d12c
ded0d50
 
b7eaba3
dc1f7da
 
 
 
 
 
 
 
 
 
 
b7eaba3
ded0d50
946777c
b7eaba3
946777c
 
dc1f7da
946777c
 
 
 
 
 
 
dc1f7da
946777c
 
b7eaba3
dc1f7da
ded0d50
b7eaba3
ded0d50
 
 
dc1f7da
9ac49a2
ded0d50
 
e58b1c2
 
 
dc1f7da
946777c
 
dc1f7da
 
946777c
 
 
 
 
 
 
 
 
 
 
 
 
ded0d50
dc1f7da
b7eaba3
e58b1c2
ded0d50
e58b1c2
 
dc1f7da
e58b1c2
 
ded0d50
 
 
6d57019
e58b1c2
ded0d50
 
 
 
e58b1c2
 
b7eaba3
6d57019
 
dc1f7da
6d57019
 
 
ded0d50
 
 
 
 
 
956dff8
b7eaba3
e58b1c2
 
ded0d50
6ae35d6
9ac49a2
6ae35d6
 
975f9c6
9ac49a2
dc1f7da
9ac49a2
 
 
c320b80
3137c41
9ac49a2
dc1f7da
3137c41
946777c
b613b80
 
dc1f7da
9ac49a2
ded0d50
6ae35d6
9ac49a2
6ae35d6
946777c
6ae35d6
 
 
9ac49a2
6ae35d6
9ac49a2
dc1f7da
6ae35d6
ded0d50
dc1f7da
6ae35d6
 
946777c
6ae35d6
 
 
 
 
b613b80
6ae35d6
 
b613b80
8254c9e
b613b80
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import pytesseract
import numpy as np
import cv2
import re
import logging
from datetime import datetime
import os
from PIL import Image

# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

# Directory for debug images
DEBUG_DIR = "debug_images"
os.makedirs(DEBUG_DIR, exist_ok=True)

def save_debug_image(img, filename_suffix, prefix=""):
    """Save image to debug directory with timestamp."""
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
    filename = os.path.join(DEBUG_DIR, f"{prefix}{timestamp}_{filename_suffix}.png")
    if isinstance(img, Image.Image):
        img.save(filename)
    elif len(img.shape) == 3:
        cv2.imwrite(filename, cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
    else:
        cv2.imwrite(filename, img)
    logging.info(f"Saved debug image: {filename}")

def estimate_brightness(img):
    """Estimate image brightness."""
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    return np.mean(gray)

def preprocess_image(img):
    """Preprocess image with enhanced contrast and adaptive thresholding."""
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    brightness = estimate_brightness(img)
    
    # Apply CLAHE with dynamic clip limit
    clahe_clip = 10.0 if brightness < 80 else 5.0
    clahe = cv2.createCLAHE(clipLimit=clahe_clip, tileGridSize=(8, 8))
    enhanced = clahe.apply(gray)
    save_debug_image(enhanced, "01_preprocess_clahe")
    
    # Stronger blur to reduce noise
    blurred = cv2.GaussianBlur(enhanced, (7, 7), 1.0)
    save_debug_image(blurred, "02_preprocess_blur")
    
    # Adaptive thresholding with larger block size
    block_size = max(11, min(41, int(img.shape[0] / 15) * 2 + 1))
    thresh = cv2.adaptiveThreshold(
        blurred, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, 
        cv2.THRESH_BINARY_INV, block_size, 5
    )
    
    # Morphological operations for better digit separation
    kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
    thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=2)
    save_debug_image(thresh, "03_preprocess_morph")
    return thresh, enhanced

def correct_rotation(img):
    """Correct image rotation using edge detection."""
    try:
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        edges = cv2.Canny(gray, 50, 150, apertureSize=3)
        lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=20, minLineLength=10, maxLineGap=5)
        if lines is not None:
            angles = [np.arctan2(line[0][3] - line[0][1], line[0][2] - line[0][0]) * 180 / np.pi for line in lines]
            angle = np.median(angles)
            if abs(angle) > 0.5:
                h, w = img.shape[:2]
                center = (w // 2, h // 2)
                M = cv2.getRotationMatrix2D(center, angle, 1.0)
                img = cv2.warpAffine(img, M, (w, h))
                save_debug_image(img, "00_rotated_image")
                logging.info(f"Applied rotation: {angle:.2f} degrees")
        return img
    except Exception as e:
        logging.error(f"Rotation correction failed: {str(e)}")
        return img

def detect_roi(img):
    """Detect region of interest with relaxed contour analysis."""
    try:
        save_debug_image(img, "04_original")
        thresh, enhanced = preprocess_image(img)
        brightness_map = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        block_sizes = [max(11, min(41, int(img.shape[0] / s) * 2 + 1)) for s in [5, 10, 15]]
        valid_contours = []
        img_area = img.shape[0] * img.shape[1]
        
        for block_size in block_sizes:
            temp_thresh = cv2.adaptiveThreshold(
                enhanced, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, 
                cv2.THRESH_BINARY_INV, block_size, 5
            )
            kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
            temp_thresh = cv2.morphologyEx(temp_thresh, cv2.MORPH_CLOSE, kernel, iterations=2)
            save_debug_image(temp_thresh, f"05_roi_threshold_block{block_size}")
            contours, _ = cv2.findContours(temp_thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
            
            for c in contours:
                area = cv2.contourArea(c)
                x, y, w, h = cv2.boundingRect(c)
                roi_brightness = np.mean(brightness_map[y:y+h, x:x+w])
                aspect_ratio = w / h
                if (30 < area < (img_area * 0.98) and 
                    0.02 <= aspect_ratio <= 25.0 and w > 15 and h > 5 and roi_brightness > 10):
                    valid_contours.append((c, area * roi_brightness))
                    logging.debug(f"Contour (block {block_size}): Area={area}, Aspect={aspect_ratio:.2f}, Brightness={roi_brightness:.2f}")
        
        if valid_contours:
            contour, _ = max(valid_contours, key=lambda x: x[1])
            x, y, w, h = cv2.boundingRect(contour)
            padding = max(5, min(25, int(min(w, h) * 0.5)))
            x, y = max(0, x - padding), max(0, y - padding)
            w, h = min(w + 2 * padding, img.shape[1] - x), min(h + 2 * padding, img.shape[0] - y)
            roi_img = img[y:y+h, x:x+w]
            save_debug_image(roi_img, "06_detected_roi")
            logging.info(f"Detected ROI: ({x}, {y}, {w}, {h})")
            return roi_img, (x, y, w, h)
        
        logging.info("No ROI found, using full image.")
        save_debug_image(img, "06_no_roi_fallback")
        return img, None
    except Exception as e:
        logging.error(f"ROI detection failed: {str(e)}")
        save_debug_image(img, "06_roi_error_fallback")
        return img, None

def detect_digit_template(digit_img, brightness):
    """Digit recognition with adjusted template matching."""
    try:
        h, w = digit_img.shape
        if h < 5 or w < 2:
            logging.debug("Digit image too small for template matching.")
            return None

        digit_templates = {
            '0': [np.array([[1, 1, 1, 1, 1], [1, 0, 0, 0, 1], [1, 0, 0, 0, 1], [1, 0, 0, 0, 1], [1, 1, 1, 1, 1]], dtype=np.float32)],
            '1': [np.array([[0, 0, 1, 0, 0], [0, 0, 1, 0, 0], [0, 0, 1, 0, 0], [0, 0, 1, 0, 0], [0, 0, 1, 0, 0]], dtype=np.float32)],
            '2': [np.array([[1, 1, 1, 1, 1], [0, 0, 0, 1, 1], [1, 1, 1, 1, 1], [1, 1, 0, 0, 0], [1, 1, 1, 1, 1]], dtype=np.float32)],
            '3': [np.array([[1, 1, 1, 1, 1], [0, 0, 0, 1, 1], [1, 1, 1, 1, 1], [0, 0, 0, 1, 1], [1, 1, 1, 1, 1]], dtype=np.float32)],
            '4': [np.array([[1, 1, 0, 0, 1], [1, 1, 0, 0, 1], [1, 1, 1, 1, 1], [0, 0, 0, 0, 1], [0, 0, 0, 0, 1]], dtype=np.float32)],
            '5': [np.array([[1, 1, 1, 1, 1], [1, 1, 0, 0, 0], [1, 1, 1, 1, 1], [0, 0, 0, 1, 1], [1, 1, 1, 1, 1]], dtype=np.float32)],
            '6': [np.array([[1, 1, 1, 1, 1], [1, 1, 0, 0, 0], [1, 1, 1, 1, 1], [1, 0, 0, 1, 1], [1, 1, 1, 1, 1]], dtype=np.float32)],
            '7': [np.array([[1, 1, 1, 1, 1], [0, 0, 0, 0, 1], [0, 0, 0, 0, 1], [0, 0, 0, 0, 1], [0, 0, 0, 0, 1]], dtype=np.float32)],
            '8': [np.array([[1, 1, 1, 1, 1], [1, 0, 0, 0, 1], [1, 1, 1, 1, 1], [1, 0, 0, 0, 1], [1, 1, 1, 1, 1]], dtype=np.float32)],
            '9': [np.array([[1, 1, 1, 1, 1], [1, 0, 0, 0, 1], [1, 1, 1, 1, 1], [0, 0, 0, 1, 1], [1, 1, 1, 1, 1]], dtype=np.float32)],
            '.': [np.array([[0, 0, 0], [0, 1, 0], [0, 0, 0]], dtype=np.float32)]
        }

        sizes = [(5, 5), (4, 4), (3, 3)] if h > w else [(3, 3), (2, 2)]
        best_match, best_score = None, -1
        for size in sizes:
            digit_img_resized = cv2.resize(digit_img, size, interpolation=cv2.INTER_AREA)
            digit_img_resized = (digit_img_resized > 90).astype(np.float32)  # Adjusted binarization threshold
            
            for digit, templates in digit_templates.items():
                for template in templates:
                    if template.shape[0] != size[0] or template.shape[1] != size[1]:
                        continue
                    result = cv2.matchTemplate(digit_img_resized, template, cv2.TM_CCOEFF_NORMED)
                    _, max_val, _, _ = cv2.minMaxLoc(result)
                    if max_val > 0.50 and max_val > best_score:  # Lowered threshold
                        best_score = max_val
                        best_match = digit
        logging.debug(f"Template match: {best_match}, Score: {best_score:.2f}")
        return best_match if best_score > 0.50 else None
    except Exception as e:
        logging.error(f"Template digit detection failed: {str(e)}")
        return None

def perform_ocr(img, roi_bbox):
    """Perform OCR with enhanced Tesseract and template fallback."""
    try:
        thresh, enhanced = preprocess_image(img)
        brightness = estimate_brightness(img)
        pil_img = Image.fromarray(enhanced)
        save_debug_image(pil_img, "07_ocr_input")
        
        # Enhanced Tesseract configurations
        configs = [
            r'--oem 3 --psm 7 -c tessedit_char_whitelist=0123456789.',  # Single line
            r'--oem 3 --psm 6 -c tessedit_char_whitelist=0123456789.',  # Block of text
            r'--oem 3 --psm 10 -c tessedit_char_whitelist=0123456789.'  # Single character
        ]
        for config in configs:
            text = pytesseract.image_to_string(pil_img, config=config)
            logging.info(f"Tesseract raw output (config {config}): {text}")
            text = re.sub(r"[^\d\.]", "", text)
            if text.count('.') > 1:
                text = text.replace('.', '', text.count('.') - 1)
            text = text.strip('.')
            if text and re.fullmatch(r"^\d*\.?\d*$", text):
                text = text.lstrip('0') or '0'
                confidence = 95.0 if len(text.replace('.', '')) >= 3 else 90.0
                logging.info(f"Validated Tesseract text: {text}, Confidence: {confidence:.2f}%")
                return text, confidence

        # Enhanced template-based detection
        logging.info("Tesseract failed, using template-based detection.")
        contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
        digits_info = []
        for c in contours:
            x, y, w, h = cv2.boundingRect(c)
            if w > 3 and h > 4 and 0.02 <= w/h <= 5.0:
                digits_info.append((x, x+w, y, y+h))
        
        if digits_info:
            digits_info.sort(key=lambda x: x[0])
            recognized_text = ""
            prev_x_max = -float('inf')
            for idx, (x_min, x_max, y_min, y_max) in enumerate(digits_info):
                x_min, y_min = max(0, x_min), max(0, y_min)
                x_max, y_max = min(thresh.shape[1], x_max), min(thresh.shape[0], y_max)
                if x_max <= x_min or y_max <= y_min:
                    continue
                digit_crop = thresh[y_min:y_max, x_min:x_max]
                save_debug_image(digit_crop, f"08_digit_crop_{idx}")
                digit = detect_digit_template(digit_crop, brightness)
                if digit:
                    recognized_text += digit
                elif x_min - prev_x_max < 15 and prev_x_max != -float('inf'):
                    recognized_text += '.'
                prev_x_max = x_max
            
            text = re.sub(r"[^\d\.]", "", recognized_text)
            if text.count('.') > 1:
                text = text.replace('.', '', text.count('.') - 1)
            text = text.strip('.')
            if text and re.fullmatch(r"^\d*\.?\d*$", text):
                text = text.lstrip('0') or '0'
                confidence = 90.0 if len(text.replace('.', '')) >= 3 else 85.0
                logging.info(f"Validated template text: {text}, Confidence: {confidence:.2f}%")
                return text, confidence
        
        logging.info("No valid digits detected.")
        return None, 0.0
    except Exception as e:
        logging.error(f"OCR failed: {str(e)}")
        return None, 0.0

def extract_weight_from_image(pil_img):
    """Extract weight from any digital scale image with adjusted thresholds."""
    try:
        img = np.array(pil_img)
        img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
        save_debug_image(img, "00_input_image")
        img = correct_rotation(img)
        brightness = estimate_brightness(img)
        conf_threshold = 0.60 if brightness > 70 else 0.40  # Lowered threshold

        # Try ROI-based detection
        roi_img, roi_bbox = detect_roi(img)
        if roi_bbox:
            conf_threshold *= 1.2 if (roi_bbox[2] * roi_bbox[3]) > (img.shape[0] * img.shape[1] * 0.03) else 1.0

        result, confidence = perform_ocr(roi_img, roi_bbox)
        if result and confidence >= conf_threshold * 100:
            try:
                weight = float(result)
                if 0.001 <= weight <= 5000:
                    logging.info(f"Detected weight: {result} kg, Confidence: {confidence:.2f}%")
                    return result, confidence
                logging.warning(f"Weight {result} out of range.")
            except ValueError:
                logging.warning(f"Invalid weight format: {result}")

        # Full image fallback with relaxed threshold
        logging.info("Primary OCR failed, using full image fallback.")
        result, confidence = perform_ocr(img, None)
        if result and confidence >= conf_threshold * 0.80 * 100:
            try:
                weight = float(result)
                if 0.001 <= weight <= 5000:
                    logging.info(f"Full image weight: {result} kg, Confidence: {confidence:.2f}%")
                    return result, confidence
                logging.warning(f"Full image weight {result} out of range.")
            except ValueError:
                logging.warning(f"Invalid full image weight format: {result}")

        logging.info("No valid weight detected.")
        return "Not detected", 0.0
    except Exception as e:
        logging.error(f"Weight extraction failed: {str(e)}")
        return "Not detected", 0.0