Spaces:
Sleeping
Sleeping
File size: 20,645 Bytes
1ef648a 76bfb75 bddf29f a2fcce4 b446f1b 2d48be5 7f91fc3 8cac918 7f91fc3 8cac918 7f91fc3 8cac918 7f91fc3 8cac918 7f91fc3 8cac918 7f91fc3 7e1f943 4119a04 b446f1b 4119a04 a2fcce4 4119a04 61e6b62 b446f1b a2fcce4 443053b 8c3b0f0 39dbf03 8c3b0f0 8b497ae 8c3b0f0 7f8700c 8c3b0f0 39dbf03 8b497ae 8c3b0f0 ea95a7e 50515cb b7709fc 7386d73 b7709fc 7386d73 b7709fc a2fcce4 b7709fc 35e172a 8c3b0f0 35e172a 8c3b0f0 35e172a 8c3b0f0 8c34617 b7709fc 452c821 8c34617 b7709fc 8c3b0f0 a2fcce4 8c3b0f0 35e172a 2e7a421 35e172a 2e7a421 0e7ae0f b4b6a14 35e172a ee949ff 3a168c3 452c821 3a92d71 b4b6a14 2e7a421 b4b6a14 2e7a421 b4b6a14 0e7ae0f 2e7a421 b4b6a14 35e172a 0e7ae0f 2e7a421 b4b6a14 ba1e210 ee949ff 887a7c1 35e172a 8c3b0f0 5a0f2dc efb3f07 89ee992 efb3f07 89ee992 8c3b0f0 5a0f2dc 8c3b0f0 efb3f07 a2fcce4 b446f1b 8c3b0f0 a2fcce4 35e172a cb90440 35e172a cb90440 b7709fc e636253 35e172a e636253 86142db e636253 df711e3 86142db e636253 35e172a 86142db efb3f07 5a0f2dc efb3f07 5a0f2dc 86142db 5a0f2dc 86142db 5a0f2dc efb3f07 86142db efb3f07 5a0f2dc 8c3b0f0 df711e3 8c3b0f0 a2fcce4 bddf29f df711e3 e4d07f2 f1eb71f a2fcce4 3d103e2 8b497ae 3d103e2 e636253 443053b e4d07f2 8b497ae e636253 8b497ae bddf29f 8b497ae 1398651 1080054 34ac2ad 1398651 89ee992 21e8468 de38b62 bddf29f 99fe899 1398651 0b34e59 f64fef3 abe9790 3a168c3 f64fef3 0b34e59 5c716b2 1bf26c9 4119a04 1bf26c9 4119a04 5c957ad 5946b43 81c73a1 de38b62 81c73a1 5946b43 4119a04 294c24c 4119a04 fa36f72 db05398 e9c524f 5c957ad 8c3b0f0 60cbd2f 5946b43 8c3b0f0 5c957ad 77698e2 7f91fc3 4119a04 d95655c 76bfb75 0b34e59 1446dbe 7e1f943 21e8468 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 |
import csv
import sys
# Increase CSV field size limit
csv.field_size_limit(sys.maxsize)
import gradio as gr
import pandas as pd
def data_pre_processing(file_responses):
console_messages.append("Starting data pre-processing...")
# Financial Weights can be anything (ultimately the row-wise weights are aggregated and the corresponding fractions are obtained from that rows' total tax payed)
try: # Define the columns to be processed
# Developing Numeric Columns
# Convert columns to numeric and fill NaN values with 0
file_responses['Personal_TaxDirection_1_TaxWeightageAllocated'] = pd.to_numeric(file_responses['Personal_TaxDirection_1_TaxWeightageAllocated'], errors='coerce').fillna(0)
file_responses['Personal_TaxDirection_2_TaxWeightageAllocated'] = pd.to_numeric(file_responses['Personal_TaxDirection_2_TaxWeightageAllocated'], errors='coerce').fillna(0)
file_responses['Personal_TaxDirection_3_TaxWeightageAllocated'] = pd.to_numeric(file_responses['Personal_TaxDirection_3_TaxWeightageAllocated'], errors='coerce').fillna(0)
file_responses['Latest estimated Tax payment?'] = pd.to_numeric(file_responses['Latest estimated Tax payment?'], errors='coerce').fillna(0)
# Adding a new column 'TotalWeightageAllocated' by summing specific columns by their names
file_responses['TotalWeightageAllocated'] = file_responses['Personal_TaxDirection_1_TaxWeightageAllocated'] + file_responses['Personal_TaxDirection_2_TaxWeightageAllocated'] + file_responses['Personal_TaxDirection_3_TaxWeightageAllocated']
# Creating Datasets (we assume everything has been provided to us in English, or the translations have been done already)
# Renaming the datasets into similar column headings
initial_dataset_1 = file_responses.rename(columns={
'Personal_TaxDirection_1_Wish': 'Problem_Description',
'Personal_TaxDirection_1_GeographicalLocation': 'Geographical_Location',
'Personal_TaxDirection_1_TaxWeightageAllocated': 'Financial_Weight'
})[['Problem_Description', 'Geographical_Location', 'Financial_Weight']]
initial_dataset_2 = file_responses.rename(columns={
'Personal_TaxDirection_2_Wish': 'Problem_Description',
'Personal_TaxDirection_2_GeographicalLocation': 'Geographical_Location',
'Personal_TaxDirection_2_TaxWeightageAllocated': 'Financial_Weight'
})[['Problem_Description', 'Geographical_Location', 'Financial_Weight']]
initial_dataset_3 = file_responses.rename(columns={
'Personal_TaxDirection_3_Wish': 'Problem_Description',
'Personal_TaxDirection_3_GeographicalLocation': 'Geographical_Location',
'Personal_TaxDirection_3_TaxWeightageAllocated': 'Financial_Weight'
})[['Problem_Description', 'Geographical_Location', 'Financial_Weight']]
# Calculating the actual TaxAmount to be allocated against each WISH (by overwriting the newly created columns)
initial_dataset_1['Financial_Weight'] = file_responses['Personal_TaxDirection_1_TaxWeightageAllocated'] * file_responses['Latest estimated Tax payment?'] / file_responses['TotalWeightageAllocated']
initial_dataset_2['Financial_Weight'] = file_responses['Personal_TaxDirection_2_TaxWeightageAllocated'] * file_responses['Latest estimated Tax payment?'] / file_responses['TotalWeightageAllocated']
initial_dataset_3['Financial_Weight'] = file_responses['Personal_TaxDirection_3_TaxWeightageAllocated'] * file_responses['Latest estimated Tax payment?'] / file_responses['TotalWeightageAllocated']
# Removing useless rows
# Drop rows where Problem_Description is NaN or an empty string
initial_dataset_1 = initial_dataset_1.dropna(subset=['Problem_Description'], axis=0)
initial_dataset_2 = initial_dataset_2.dropna(subset=['Problem_Description'], axis=0)
initial_dataset_3 = initial_dataset_3.dropna(subset=['Problem_Description'], axis=0)
# Convert 'Problem_Description' column to string type
initial_dataset_1['Problem_Description'] = initial_dataset_1['Problem_Description'].astype(str)
initial_dataset_2['Problem_Description'] = initial_dataset_2['Problem_Description'].astype(str)
initial_dataset_3['Problem_Description'] = initial_dataset_3['Problem_Description'].astype(str)
# Merging the Datasets
# Vertically concatenating (merging) the 3 DataFrames
merged_dataset = pd.concat([initial_dataset_1, initial_dataset_2, initial_dataset_3], ignore_index=True)
# Different return can be used to check the processing
console_messages.append("Data pre-processing completed.")
# return file_responses
return merged_dataset
except Exception as e:
console_messages.append(f"Error during data pre-processing: {str(e)}")
# return str(e), console_messages
return None
import spacy
from transformers import AutoTokenizer, AutoModel
import torch
# Load SpaCy model
# Install the 'en_core_web_sm' model if it isn't already installed
try:
nlp = spacy.load('en_core_web_sm')
except OSError:
# Instead of this try~catch, we could also include this < https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.5.0/en_core_web_sm-3.5.0.tar.gz > in the requirements.txt to directly load it
from spacy.cli import download
download('en_core_web_sm')
nlp = spacy.load('en_core_web_sm')
# Load Hugging Face Transformers model
tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/all-mpnet-base-v2")
model = AutoModel.from_pretrained("sentence-transformers/all-mpnet-base-v2")
import re
import nltk
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
# Download necessary NLTK data
nltk.download('punkt')
nltk.download('stopwords')
nltk.download('averaged_perceptron_tagger')
import numpy as np
import sentencepiece as sp
from transformers import pipeline
# Load a summarization model
summarizer = pipeline("summarization")
def Summarized_text(passed_text):
try:
# Summarization
summarize_text = summarizer(passed_text, max_length=70, min_length=30, do_sample=False)[0]['summary_text']
return summarize_text
except Exception as e:
print(f"Summarization failed: {e}")
return passed_text
###### Will uncomment Summarization during final deployment... as it takes a lot of time
def Lemmatize_text(text):
# Text Cleaning
text = re.sub(r'[^\w\s]', '', text)
text = re.sub(r'\d+', '', text)
text = re.sub(r'http\S+', '', text) # Remove https URLs
text = re.sub(r'www\.\S+', '', text) # Remove www URLs
# Tokenize and remove stopwords
tokens = word_tokenize(text.lower())
stop_words = set(stopwords.words('english'))
custom_stopwords = {'example', 'another'} # Add custom stopwords
tokens = [word for word in tokens if word not in stop_words and word not in custom_stopwords]
# NER - Remove named entities
doc = nlp(' '.join(tokens))
tokens = [token.text for token in doc if not token.ent_type_]
# POS Tagging (optional)
pos_tags = nltk.pos_tag(tokens)
tokens = [word for word, pos in pos_tags if pos in ['NN', 'NNS']] # Filter nouns
# Lemmatize tokens using SpaCy
doc = nlp(' '.join(tokens))
lemmatized_text = ' '.join([token.lemma_ for token in doc])
return lemmatized_text # Return the cleaned and lemmatized text
from random import random
def text_processing_for_domain(text):
# First, get the summarized text
summarized_text = ""
# summarized_text = Summarized_text(text)
# Then, lemmatize the original text
lemmatized_text = ""
lemmatized_text = Lemmatize_text(text)
if lemmatized_text and summarized_text:
# Join both the summarized and lemmatized text
if random() > 0.5:
combined_text = summarized_text + " " + lemmatized_text
else:
combined_text = lemmatized_text + " " + summarized_text
return combined_text
elif summarized_text:
return summarized_text
elif lemmatized_text:
return lemmatized_text
else:
return "Sustainability and Longevity" # Default FailSafe
from sentence_transformers import SentenceTransformer
from sklearn.cluster import AgglomerativeClustering, KMeans
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics import silhouette_score
from bertopic import BERTopic
from collections import Counter
def extract_problem_domains(df,
text_column='Processed_ProblemDescription_forDomainExtraction',
cluster_range=(5, 15),
top_words=10):
console_messages.append("Extracting Problem Domains...")
# Sentence Transformers approach
model = SentenceTransformer('all-mpnet-base-v2')
embeddings = model.encode(df[text_column].tolist())
# Perform hierarchical clustering with Silhouette Analysis
silhouette_scores = []
for n_clusters in range(cluster_range[0], cluster_range[1] + 1):
clustering = AgglomerativeClustering(n_clusters=n_clusters)
cluster_labels = clustering.fit_predict(embeddings)
silhouette_avg = silhouette_score(embeddings, cluster_labels)
silhouette_scores.append(silhouette_avg)
# Determine the optimal number of clusters
optimal_n_clusters = cluster_range[0] + silhouette_scores.index(max(silhouette_scores))
# Perform clustering with the optimal number of clusters
clustering = AgglomerativeClustering(n_clusters=optimal_n_clusters)
cluster_labels = clustering.fit_predict(embeddings)
# Get representative words for each cluster
cluster_representations = {}
for i in range(optimal_n_clusters):
cluster_words = df.loc[cluster_labels == i, text_column].str.cat(sep=' ').split()
cluster_representations[i] = [word for word, _ in Counter(cluster_words).most_common(top_words)]
# Map cluster labels to representative words
df["Problem_Cluster"] = cluster_labels
df['Problem_Category_Words'] = [cluster_representations[label] for label in cluster_labels]
# console_messages.append("Returning from Problem Domain Extraction function.")
console_messages.append("Problem Domain Extraction completed.")
return df, optimal_n_clusters
def Extract_Location(text):
doc = nlp(text)
locations = [ent.text for ent in doc.ents if ent.label_ in ['GPE', 'LOC']]
return ' '.join(locations)
def text_processing_for_location(text):
# Extract locations
locations_text = Extract_Location(text)
# Perform further text cleaning if necessary
processed_locations_text = Lemmatize_text(locations_text)
# Remove special characters, digits, and punctuation
processed_locations_text = re.sub(r'[^a-zA-Z\s]', '', processed_locations_text)
# Tokenize and remove stopwords
tokens = word_tokenize(processed_locations_text.lower())
stop_words = set(stopwords.words('english'))
tokens = [word for word in tokens if word not in stop_words]
# Join location words into a single string
final_locations_text = ' '.join(tokens)
return final_locations_text if final_locations_text else "India"
def extract_location_clusters(df,
text_column='Processed_LocationText_forClustering',
cluster_range=(3, 10),
top_words=5):
console_messages.append("Extracting Location Clusters...")
# Sentence Transformers approach for embeddings
model = SentenceTransformer('all-mpnet-base-v2')
embeddings = model.encode(df[text_column].tolist())
# Perform hierarchical clustering with Silhouette Analysis
silhouette_scores = []
for n_clusters in range(cluster_range[0], cluster_range[1] + 1):
clustering = AgglomerativeClustering(n_clusters=n_clusters)
cluster_labels = clustering.fit_predict(embeddings)
silhouette_avg = silhouette_score(embeddings, cluster_labels)
silhouette_scores.append(silhouette_avg)
# Determine the optimal number of clusters
optimal_n_clusters = cluster_range[0] + silhouette_scores.index(max(silhouette_scores))
# Perform clustering with the optimal number of clusters
clustering = AgglomerativeClustering(n_clusters=optimal_n_clusters)
cluster_labels = clustering.fit_predict(embeddings)
# Get representative words for each cluster
cluster_representations = {}
for i in range(optimal_n_clusters):
cluster_words = df.loc[cluster_labels == i, text_column].str.cat(sep=' ').split()
cluster_representations[i] = [word for word, _ in Counter(cluster_words).most_common(top_words)]
# Map cluster labels to representative words
df["Location_Cluster"] = cluster_labels
df['Location_Category_Words'] = [cluster_representations[label] for label in cluster_labels]
console_messages.append("Location Clustering completed.")
return df, optimal_n_clusters
def nlp_pipeline(original_df):
console_messages.append("Starting NLP pipeline...")
# Data Preprocessing
processed_df = data_pre_processing(original_df) # merged_dataset
# Starting the Pipeline for Domain Extraction
console_messages.append("Executing Text processing function for Domain identification")
# Apply the text_processing_for_domain function to the DataFrame
processed_df['Processed_ProblemDescription_forDomainExtraction'] = processed_df['Problem_Description'].apply(text_processing_for_domain)
console_messages.append("Removing entries which could not be allocated to any Problem Domain")
# processed_df = processed_df.dropna(subset=['Processed_ProblemDescription_forDomainExtraction'], axis=0)
# Drop rows where 'Processed_ProblemDescription_forDomainExtraction' contains empty arrays
processed_df = processed_df[processed_df['Processed_ProblemDescription_forDomainExtraction'].apply(lambda x: len(x) > 0)]
# Domain Clustering
try:
processed_df, optimal_n_clusters = extract_problem_domains(processed_df)
console_messages.append(f"Optimal clusters for Domain extraction: {optimal_n_clusters}")
except Exception as e:
console_messages.append(f"Error in extract_problem_domains: {str(e)}")
console_messages.append("NLP pipeline for Problem Domain extraction completed.")
console_messages.append("Starting NLP pipeline for Location extraction with text processing.")
# Apply the text_processing_for_location function to the DataFrame
# processed_df['Processed_LocationText_forClustering'] = processed_df['Problem_Description'].apply(text_processing_for_location)
processed_df['Processed_LocationText_forClustering'], processed_df['Extracted_Locations'] = zip(*processed_df.apply(text_processing_for_location, axis=1))
# Location Clustering
try:
processed_df, optimal_n_clusters = extract_location_clusters(processed_df)
console_messages.append(f"Optimal clusters for Location extraction: {optimal_n_clusters}")
except Exception as e:
console_messages.append(f"Error in extract_location_clusters: {str(e)}")
console_messages.append("NLP pipeline for location extraction completed.")
console_messages.append("NLP pipeline completed.")
return processed_df
console_messages = []
def process_excel(file):
console_messages.append("Processing starts. Reading the uploaded Excel file...")
# Ensure the file path is correct
file_path = file.name if hasattr(file, 'name') else file
# Read the Excel file
df = pd.read_excel(file_path)
try:
# Process the DataFrame
console_messages.append("Processing the DataFrame...")
result_df = nlp_pipeline(df)
# output_file = "Output_ProjectProposals.xlsx"
output_file = "Output_Proposals.xlsx"
result_df.to_excel(output_file, index=False)
console_messages.append("Processing completed. Ready for download.")
return output_file, "\n".join(console_messages) # Return the processed DataFrame as Excel file
except Exception as e:
# return str(e) # Return the error message
# error_message = f"Error processing file: {str(e)}"
# print(error_message) # Log the error
console_messages.append(f"Error during processing: {str(e)}")
# return error_message, "Santanu Banerjee" # Return the error message to the user
return None, "\n".join(console_messages)
# example_files = ['#TaxDirection (Responses)_BasicExample.xlsx',
# '#TaxDirection (Responses)_IntermediateExample.xlsx',
# '#TaxDirection (Responses)_UltimateExample.xlsx'
# ]
example_files = ['#TaxDirection (Responses)_BasicExample.xlsx',
'#TaxDirection (Responses)_IntermediateExample.xlsx',
]
# example_files = ['#TaxDirection (Responses)_BasicExample.xlsx',]
import random
a_random_object = random.choice(["⇒", "↣", "↠", "→"])
# Define the Gradio interface
interface = gr.Interface(
fn=process_excel, # The function to process the uploaded file
inputs=gr.File(type="filepath", label="Upload Excel File here. \t Be sure to check that the column headings in your upload are the same as in the Example files below. \t (Otherwise there will be Error during the processing)"), # File upload input
examples=example_files, # Add the example files
outputs=[
gr.File(label="Download the processed Excel File containing the ** Project Proposals ** for each Location~Problem paired combination"), # File download output
gr.Textbox(label="Console Messages", lines=15, interactive=False) # Console messages output
],
# title="Excel File Uploader",
# title="Upload Excel file containing #TaxDirections → Download HyperLocal Project Proposals\n",
title = (
"<p style='font-weight: bold; font-size: 25px; text-align: center;'>"
"<span style='color: blue;'>Upload Excel file containing #TaxDirections</span> "
# "<span style='color: brown; font-size: 35px;'>→ </span>"
# "<span style='color: brown; font-size: 35px;'>⇒ ↣ ↠ </span>"
"<span style='color: brown; font-size: 35px;'> " +a_random_object +" </span>"
"<span style='color: green;'>Download HyperLocal Project Proposals</span>"
"</p>\n"
),
description=(
"<p style='font-size: 12px; color: gray; text-align: center'>This tool allows for the systematic evaluation and proposal of solutions tailored to specific location-problem pairs, ensuring efficient resource allocation and project planning. For more information, visit <a href='https://santanban.github.io/TaxDirection/' target='_blank'>#TaxDirection weblink</a>.</p>"
"<p style='font-weight: bold; font-size: 16px; color: blue;'>Upload an Excel file to process and download the result or use the Example files:</p>"
"<p style='font-weight: bold; font-size: 15px; color: blue;'>(click on any of them to directly process the file and Download the result)</p>"
"<p style='font-weight: bold; font-size: 14px; color: green; text-align: right;'>Processed output contains a Project Proposal for each Location~Problem paired combination (i.e. each cell).</p>"
"<p style='font-weight: bold; font-size: 13px; color: green; text-align: right;'>Corresponding Budget Allocation and estimated Project Completion Time are provided in different sheets.</p>"
"<p style='font-size: 12px; color: gray; text-align: center'>Note: The example files provided above are for demonstration purposes. Feel free to upload your own Excel files to see the results. If you have any questions, refer to the documentation-links or contact <a href='https://www.change.org/p/democracy-evolution-ensuring-humanity-s-eternal-existence-through-taxdirection' target='_blank'>support</a>.</p>"
) # Solid description with right-aligned second sentence
)
# Launch the interface
if __name__ == "__main__":
interface.launch() |