File size: 20,645 Bytes
1ef648a
 
 
 
 
 
 
 
76bfb75
bddf29f
 
a2fcce4
b446f1b
2d48be5
7f91fc3
 
8cac918
7f91fc3
8cac918
 
 
 
 
 
7f91fc3
8cac918
 
7f91fc3
8cac918
7f91fc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cac918
 
7f91fc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e1f943
 
4119a04
b446f1b
4119a04
a2fcce4
4119a04
61e6b62
b446f1b
 
a2fcce4
443053b
8c3b0f0
 
 
 
 
 
 
 
 
 
39dbf03
 
 
 
 
 
 
 
 
8c3b0f0
 
 
 
 
 
 
8b497ae
8c3b0f0
7f8700c
8c3b0f0
 
39dbf03
 
 
8b497ae
 
 
 
8c3b0f0
ea95a7e
 
50515cb
 
 
 
b7709fc
7386d73
 
b7709fc
 
7386d73
 
b7709fc
 
a2fcce4
b7709fc
35e172a
 
 
 
 
8c3b0f0
 
35e172a
8c3b0f0
35e172a
 
 
 
 
 
 
 
 
 
8c3b0f0
 
 
 
8c34617
 
b7709fc
 
 
 
 
 
452c821
8c34617
b7709fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c3b0f0
a2fcce4
8c3b0f0
35e172a
2e7a421
 
35e172a
2e7a421
0e7ae0f
b4b6a14
35e172a
ee949ff
3a168c3
 
452c821
3a92d71
b4b6a14
 
 
 
 
 
 
 
 
2e7a421
b4b6a14
 
 
 
 
2e7a421
b4b6a14
 
 
0e7ae0f
2e7a421
b4b6a14
 
 
 
35e172a
 
0e7ae0f
 
2e7a421
b4b6a14
ba1e210
ee949ff
887a7c1
35e172a
8c3b0f0
 
5a0f2dc
 
 
 
 
efb3f07
 
 
 
 
 
89ee992
 
 
 
efb3f07
89ee992
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c3b0f0
5a0f2dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c3b0f0
efb3f07
 
 
 
 
 
 
 
 
a2fcce4
b446f1b
 
8c3b0f0
a2fcce4
35e172a
 
cb90440
35e172a
 
cb90440
 
b7709fc
 
 
e636253
35e172a
e636253
86142db
 
e636253
df711e3
86142db
e636253
35e172a
86142db
efb3f07
5a0f2dc
efb3f07
 
5a0f2dc
 
 
86142db
 
5a0f2dc
 
86142db
5a0f2dc
efb3f07
86142db
 
efb3f07
5a0f2dc
 
8c3b0f0
df711e3
8c3b0f0
a2fcce4
bddf29f
df711e3
 
 
 
 
 
e4d07f2
f1eb71f
 
a2fcce4
3d103e2
8b497ae
 
3d103e2
e636253
 
 
443053b
e4d07f2
8b497ae
e636253
 
 
 
 
8b497ae
bddf29f
8b497ae
1398651
 
 
 
1080054
 
34ac2ad
 
 
 
 
 
1398651
89ee992
21e8468
 
de38b62
 
 
 
bddf29f
 
 
99fe899
1398651
 
 
0b34e59
f64fef3
abe9790
3a168c3
f64fef3
0b34e59
5c716b2
1bf26c9
4119a04
1bf26c9
4119a04
5c957ad
5946b43
81c73a1
 
de38b62
 
81c73a1
5946b43
4119a04
294c24c
4119a04
 
fa36f72
db05398
e9c524f
5c957ad
 
8c3b0f0
60cbd2f
5946b43
8c3b0f0
5c957ad
77698e2
7f91fc3
4119a04
d95655c
 
76bfb75
 
0b34e59
1446dbe
7e1f943
 
21e8468
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
import csv
import sys

# Increase CSV field size limit
csv.field_size_limit(sys.maxsize)



import gradio as gr
import pandas as pd

def data_pre_processing(file_responses):
    console_messages.append("Starting data pre-processing...")
    # Financial Weights can be anything (ultimately the row-wise weights are aggregated and the corresponding fractions are obtained from that rows' total tax payed)
    
    try: # Define the columns to be processed
        
        # Developing Numeric Columns
        # Convert columns to numeric and fill NaN values with 0
        file_responses['Personal_TaxDirection_1_TaxWeightageAllocated'] = pd.to_numeric(file_responses['Personal_TaxDirection_1_TaxWeightageAllocated'], errors='coerce').fillna(0)
        file_responses['Personal_TaxDirection_2_TaxWeightageAllocated'] = pd.to_numeric(file_responses['Personal_TaxDirection_2_TaxWeightageAllocated'], errors='coerce').fillna(0)
        file_responses['Personal_TaxDirection_3_TaxWeightageAllocated'] = pd.to_numeric(file_responses['Personal_TaxDirection_3_TaxWeightageAllocated'], errors='coerce').fillna(0)
        file_responses['Latest estimated Tax payment?'] = pd.to_numeric(file_responses['Latest estimated Tax payment?'], errors='coerce').fillna(0)
        
        # Adding a new column 'TotalWeightageAllocated' by summing specific columns by their names
        file_responses['TotalWeightageAllocated'] = file_responses['Personal_TaxDirection_1_TaxWeightageAllocated'] + file_responses['Personal_TaxDirection_2_TaxWeightageAllocated'] + file_responses['Personal_TaxDirection_3_TaxWeightageAllocated']

        

        # Creating Datasets (we assume everything has been provided to us in English, or the translations have been done already)
        # Renaming the datasets into similar column headings
        initial_dataset_1 = file_responses.rename(columns={
            'Personal_TaxDirection_1_Wish': 'Problem_Description',
            'Personal_TaxDirection_1_GeographicalLocation': 'Geographical_Location',
            'Personal_TaxDirection_1_TaxWeightageAllocated': 'Financial_Weight'
        })[['Problem_Description', 'Geographical_Location', 'Financial_Weight']]
        
        initial_dataset_2 = file_responses.rename(columns={
            'Personal_TaxDirection_2_Wish': 'Problem_Description',
            'Personal_TaxDirection_2_GeographicalLocation': 'Geographical_Location',
            'Personal_TaxDirection_2_TaxWeightageAllocated': 'Financial_Weight'
        })[['Problem_Description', 'Geographical_Location', 'Financial_Weight']]
        
        initial_dataset_3 = file_responses.rename(columns={
            'Personal_TaxDirection_3_Wish': 'Problem_Description',
            'Personal_TaxDirection_3_GeographicalLocation': 'Geographical_Location',
            'Personal_TaxDirection_3_TaxWeightageAllocated': 'Financial_Weight'
        })[['Problem_Description', 'Geographical_Location', 'Financial_Weight']]


        
        # Calculating the actual TaxAmount to be allocated against each WISH (by overwriting the newly created columns)
        initial_dataset_1['Financial_Weight'] = file_responses['Personal_TaxDirection_1_TaxWeightageAllocated'] * file_responses['Latest estimated Tax payment?'] / file_responses['TotalWeightageAllocated']
        initial_dataset_2['Financial_Weight'] = file_responses['Personal_TaxDirection_2_TaxWeightageAllocated'] * file_responses['Latest estimated Tax payment?'] / file_responses['TotalWeightageAllocated']
        initial_dataset_3['Financial_Weight'] = file_responses['Personal_TaxDirection_3_TaxWeightageAllocated'] * file_responses['Latest estimated Tax payment?'] / file_responses['TotalWeightageAllocated']
        
        # Removing useless rows
        # Drop rows where Problem_Description is NaN or an empty string
        initial_dataset_1 = initial_dataset_1.dropna(subset=['Problem_Description'], axis=0)
        initial_dataset_2 = initial_dataset_2.dropna(subset=['Problem_Description'], axis=0)
        initial_dataset_3 = initial_dataset_3.dropna(subset=['Problem_Description'], axis=0)
        
        # Convert 'Problem_Description' column to string type
        initial_dataset_1['Problem_Description'] = initial_dataset_1['Problem_Description'].astype(str)
        initial_dataset_2['Problem_Description'] = initial_dataset_2['Problem_Description'].astype(str)
        initial_dataset_3['Problem_Description'] = initial_dataset_3['Problem_Description'].astype(str)
        
        # Merging the Datasets
        # Vertically concatenating (merging) the 3 DataFrames
        merged_dataset = pd.concat([initial_dataset_1, initial_dataset_2, initial_dataset_3], ignore_index=True)

        
        # Different return can be used to check the processing
        console_messages.append("Data pre-processing completed.")
        # return file_responses
        return merged_dataset
        
    except Exception as e:
        console_messages.append(f"Error during data pre-processing: {str(e)}")
        # return str(e), console_messages
        return None






import spacy
from transformers import AutoTokenizer, AutoModel
import torch

# Load SpaCy model
# Install the 'en_core_web_sm' model if it isn't already installed
try:
    nlp = spacy.load('en_core_web_sm')
except OSError:
    # Instead of this try~catch, we could also include this < https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.5.0/en_core_web_sm-3.5.0.tar.gz > in the requirements.txt to directly load it
    from spacy.cli import download
    download('en_core_web_sm')
    nlp = spacy.load('en_core_web_sm')


# Load Hugging Face Transformers model
tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/all-mpnet-base-v2")
model = AutoModel.from_pretrained("sentence-transformers/all-mpnet-base-v2")




import re
import nltk
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
# Download necessary NLTK data
nltk.download('punkt')
nltk.download('stopwords')
nltk.download('averaged_perceptron_tagger')




import numpy as np
import sentencepiece as sp
from transformers import pipeline
# Load a summarization model
summarizer = pipeline("summarization")

def Summarized_text(passed_text):
    try:
        # Summarization
        summarize_text = summarizer(passed_text, max_length=70, min_length=30, do_sample=False)[0]['summary_text']
        return summarize_text
    except Exception as e:
        print(f"Summarization failed: {e}")
        return passed_text
    ###### Will uncomment Summarization during final deployment... as it takes a lot of time
    
def Lemmatize_text(text):
    # Text Cleaning
    text = re.sub(r'[^\w\s]', '', text)
    text = re.sub(r'\d+', '', text)
    text = re.sub(r'http\S+', '', text)  # Remove https URLs
    text = re.sub(r'www\.\S+', '', text)  # Remove www URLs
    
    # Tokenize and remove stopwords
    tokens = word_tokenize(text.lower())
    stop_words = set(stopwords.words('english'))
    custom_stopwords = {'example', 'another'}  # Add custom stopwords
    tokens = [word for word in tokens if word not in stop_words and word not in custom_stopwords]

    # NER - Remove named entities
    doc = nlp(' '.join(tokens))
    tokens = [token.text for token in doc if not token.ent_type_]
    
    # POS Tagging (optional)
    pos_tags = nltk.pos_tag(tokens)
    tokens = [word for word, pos in pos_tags if pos in ['NN', 'NNS']]  # Filter nouns
    
    # Lemmatize tokens using SpaCy
    doc = nlp(' '.join(tokens))
    lemmatized_text = ' '.join([token.lemma_ for token in doc])

    return lemmatized_text  # Return the cleaned and lemmatized text


from random import random
def text_processing_for_domain(text):
    # First, get the summarized text
    summarized_text = ""
    # summarized_text = Summarized_text(text)
    
    # Then, lemmatize the original text
    lemmatized_text = ""
    lemmatized_text = Lemmatize_text(text)

    if lemmatized_text and summarized_text:
        # Join both the summarized and lemmatized text
        if random() > 0.5:
            combined_text = summarized_text + "  " + lemmatized_text
        else:
            combined_text = lemmatized_text + "  " + summarized_text
        return combined_text
    elif summarized_text:
        return summarized_text
    elif lemmatized_text:
        return lemmatized_text
    else:
        return "Sustainability and Longevity" # Default FailSafe
    


from sentence_transformers import SentenceTransformer
from sklearn.cluster import AgglomerativeClustering, KMeans
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics import silhouette_score
from bertopic import BERTopic
from collections import Counter


def extract_problem_domains(df, 
                            text_column='Processed_ProblemDescription_forDomainExtraction',
                            cluster_range=(5, 15), 
                            top_words=10):
    console_messages.append("Extracting Problem Domains...")
    
    # Sentence Transformers approach
    model = SentenceTransformer('all-mpnet-base-v2')
    embeddings = model.encode(df[text_column].tolist())
    
    # Perform hierarchical clustering with Silhouette Analysis
    silhouette_scores = []
    for n_clusters in range(cluster_range[0], cluster_range[1] + 1):
        clustering = AgglomerativeClustering(n_clusters=n_clusters)
        cluster_labels = clustering.fit_predict(embeddings)
        silhouette_avg = silhouette_score(embeddings, cluster_labels)
        silhouette_scores.append(silhouette_avg)
    
    # Determine the optimal number of clusters
    optimal_n_clusters = cluster_range[0] + silhouette_scores.index(max(silhouette_scores))
    
    # Perform clustering with the optimal number of clusters
    clustering = AgglomerativeClustering(n_clusters=optimal_n_clusters)
    cluster_labels = clustering.fit_predict(embeddings)
    
    # Get representative words for each cluster
    cluster_representations = {}
    for i in range(optimal_n_clusters):
        cluster_words = df.loc[cluster_labels == i, text_column].str.cat(sep=' ').split()
        cluster_representations[i] = [word for word, _ in Counter(cluster_words).most_common(top_words)]
    
    # Map cluster labels to representative words
    df["Problem_Cluster"] = cluster_labels
    df['Problem_Category_Words'] = [cluster_representations[label] for label in cluster_labels]
    
    # console_messages.append("Returning from Problem Domain Extraction function.")
    console_messages.append("Problem Domain Extraction completed.")    
    return df, optimal_n_clusters


















def Extract_Location(text):
    doc = nlp(text)
    locations = [ent.text for ent in doc.ents if ent.label_ in ['GPE', 'LOC']]
    return ' '.join(locations)

def text_processing_for_location(text):
    # Extract locations
    locations_text = Extract_Location(text)
    
    # Perform further text cleaning if necessary
    processed_locations_text = Lemmatize_text(locations_text)
    
    # Remove special characters, digits, and punctuation
    processed_locations_text = re.sub(r'[^a-zA-Z\s]', '', processed_locations_text)
    
    # Tokenize and remove stopwords
    tokens = word_tokenize(processed_locations_text.lower())
    stop_words = set(stopwords.words('english'))
    tokens = [word for word in tokens if word not in stop_words]
    
    # Join location words into a single string
    final_locations_text = ' '.join(tokens)
    
    return final_locations_text if final_locations_text else "India"
    

def extract_location_clusters(df, 
                              text_column='Processed_LocationText_forClustering', 
                              cluster_range=(3, 10), 
                              top_words=5):
    console_messages.append("Extracting Location Clusters...")
    
    # Sentence Transformers approach for embeddings
    model = SentenceTransformer('all-mpnet-base-v2')
    embeddings = model.encode(df[text_column].tolist())
    
    # Perform hierarchical clustering with Silhouette Analysis
    silhouette_scores = []
    for n_clusters in range(cluster_range[0], cluster_range[1] + 1):
        clustering = AgglomerativeClustering(n_clusters=n_clusters)
        cluster_labels = clustering.fit_predict(embeddings)
        silhouette_avg = silhouette_score(embeddings, cluster_labels)
        silhouette_scores.append(silhouette_avg)
    
    # Determine the optimal number of clusters
    optimal_n_clusters = cluster_range[0] + silhouette_scores.index(max(silhouette_scores))
    
    # Perform clustering with the optimal number of clusters
    clustering = AgglomerativeClustering(n_clusters=optimal_n_clusters)
    cluster_labels = clustering.fit_predict(embeddings)
    
    # Get representative words for each cluster
    cluster_representations = {}
    for i in range(optimal_n_clusters):
        cluster_words = df.loc[cluster_labels == i, text_column].str.cat(sep=' ').split()
        cluster_representations[i] = [word for word, _ in Counter(cluster_words).most_common(top_words)]
    
    # Map cluster labels to representative words
    df["Location_Cluster"] = cluster_labels
    df['Location_Category_Words'] = [cluster_representations[label] for label in cluster_labels]
    
    console_messages.append("Location Clustering completed.")    
    return df, optimal_n_clusters



















def nlp_pipeline(original_df):
    console_messages.append("Starting NLP pipeline...")
    
    # Data Preprocessing
    processed_df = data_pre_processing(original_df) # merged_dataset

    # Starting the Pipeline for Domain Extraction
    console_messages.append("Executing Text processing function for Domain identification")
    # Apply the text_processing_for_domain function to the DataFrame
    processed_df['Processed_ProblemDescription_forDomainExtraction'] = processed_df['Problem_Description'].apply(text_processing_for_domain)
    
    console_messages.append("Removing entries which could not be allocated to any Problem Domain")
    # processed_df = processed_df.dropna(subset=['Processed_ProblemDescription_forDomainExtraction'], axis=0)
    # Drop rows where 'Processed_ProblemDescription_forDomainExtraction' contains empty arrays
    processed_df = processed_df[processed_df['Processed_ProblemDescription_forDomainExtraction'].apply(lambda x: len(x) > 0)]
    
    # Domain Clustering
    try:
        processed_df, optimal_n_clusters = extract_problem_domains(processed_df)
        console_messages.append(f"Optimal clusters for Domain extraction: {optimal_n_clusters}")
    except Exception as e:
        console_messages.append(f"Error in extract_problem_domains: {str(e)}")
    console_messages.append("NLP pipeline for Problem Domain extraction completed.")

    
    console_messages.append("Starting NLP pipeline for Location extraction with text processing.")
    
    # Apply the text_processing_for_location function to the DataFrame
    # processed_df['Processed_LocationText_forClustering'] = processed_df['Problem_Description'].apply(text_processing_for_location)
    processed_df['Processed_LocationText_forClustering'], processed_df['Extracted_Locations'] = zip(*processed_df.apply(text_processing_for_location, axis=1))
        
    # Location Clustering
    try:
        processed_df, optimal_n_clusters = extract_location_clusters(processed_df)
        console_messages.append(f"Optimal clusters for Location extraction: {optimal_n_clusters}")
    except Exception as e:
        console_messages.append(f"Error in extract_location_clusters: {str(e)}")
    console_messages.append("NLP pipeline for location extraction completed.")

    
    console_messages.append("NLP pipeline completed.")
    return processed_df
    
        
    
    
    
    
console_messages = []
def process_excel(file):
    console_messages.append("Processing starts. Reading the uploaded Excel file...")
    # Ensure the file path is correct
    file_path = file.name if hasattr(file, 'name') else file
    # Read the Excel file
    df = pd.read_excel(file_path)

    try:
        # Process the DataFrame
        console_messages.append("Processing the DataFrame...")
        result_df = nlp_pipeline(df)

        # output_file = "Output_ProjectProposals.xlsx"
        output_file = "Output_Proposals.xlsx"
        result_df.to_excel(output_file, index=False)

        console_messages.append("Processing completed. Ready for download.")
        return output_file, "\n".join(console_messages)  # Return the processed DataFrame as Excel file
        
    except Exception as e:
        # return str(e)  # Return the error message
        # error_message = f"Error processing file: {str(e)}"
        # print(error_message)  # Log the error
        console_messages.append(f"Error during processing: {str(e)}")
        # return error_message, "Santanu Banerjee" # Return the error message to the user
        return None, "\n".join(console_messages)


        




# example_files = ['#TaxDirection (Responses)_BasicExample.xlsx',
#                  '#TaxDirection (Responses)_IntermediateExample.xlsx',
#                  '#TaxDirection (Responses)_UltimateExample.xlsx'
#                 ]

example_files = ['#TaxDirection (Responses)_BasicExample.xlsx',
                 '#TaxDirection (Responses)_IntermediateExample.xlsx',
                 ]

# example_files = ['#TaxDirection (Responses)_BasicExample.xlsx',]


import random
a_random_object = random.choice(["&rArr;", "&rarrtl;", "&Rarr;", "&rarr;"])


# Define the Gradio interface
interface = gr.Interface(
    fn=process_excel,  # The function to process the uploaded file
    inputs=gr.File(type="filepath", label="Upload Excel File here. \t Be sure to check that the column headings in your upload are the same as in the Example files below. \t (Otherwise there will be Error during the processing)"),  # File upload input
    
    examples=example_files,  # Add the example files
    
    
    outputs=[
        gr.File(label="Download the processed Excel File containing the ** Project Proposals ** for each Location~Problem paired combination"),  # File download output
        gr.Textbox(label="Console Messages", lines=15, interactive=False)  # Console messages output
        ],
    
    
    # title="Excel File Uploader",
    # title="Upload Excel file containing #TaxDirections &rarr; Download HyperLocal Project Proposals\n",
    
    title = (
        "<p style='font-weight: bold; font-size: 25px; text-align: center;'>"
        "<span style='color: blue;'>Upload Excel file containing #TaxDirections</span> "
        
        # "<span style='color: brown; font-size: 35px;'>&rarr; </span>"
        # "<span style='color: brown; font-size: 35px;'>&rArr;  &rarrtl; &Rarr; </span>"
        "<span style='color: brown; font-size: 35px;'> " +a_random_object +" </span>"
        
        "<span style='color: green;'>Download HyperLocal Project Proposals</span>"
        "</p>\n"
    ),



    description=(
        "<p style='font-size: 12px; color: gray; text-align: center'>This tool allows for the systematic evaluation and proposal of solutions tailored to specific location-problem pairs, ensuring efficient resource allocation and project planning. For more information, visit <a href='https://santanban.github.io/TaxDirection/' target='_blank'>#TaxDirection weblink</a>.</p>"
        
        "<p style='font-weight: bold; font-size: 16px; color: blue;'>Upload an Excel file to process and download the result or use the Example files:</p>"
        "<p style='font-weight: bold; font-size: 15px; color: blue;'>(click on any of them to directly process the file and Download the result)</p>"
        
        "<p style='font-weight: bold; font-size: 14px; color: green; text-align: right;'>Processed output contains a Project Proposal for each Location~Problem paired combination (i.e. each cell).</p>"
        "<p style='font-weight: bold; font-size: 13px; color: green; text-align: right;'>Corresponding Budget Allocation and estimated Project Completion Time are provided in different sheets.</p>"

        
        "<p style='font-size: 12px; color: gray; text-align: center'>Note: The example files provided above are for demonstration purposes. Feel free to upload your own Excel files to see the results. If you have any questions, refer to the documentation-links or contact <a href='https://www.change.org/p/democracy-evolution-ensuring-humanity-s-eternal-existence-through-taxdirection' target='_blank'>support</a>.</p>"
        
    )  # Solid description with right-aligned second sentence

)



# Launch the interface
if __name__ == "__main__":
    interface.launch()