File size: 6,682 Bytes
fcb92fa
 
 
 
32331b8
d7d91e9
30fe6c5
fcb92fa
5611ccc
fcb92fa
4b8ab3d
fae6d46
 
 
 
02747bf
2013f2d
4437d7f
 
fae6d46
02747bf
fcb92fa
fae6d46
 
 
e8a947e
4b8ab3d
 
fae6d46
 
1d44339
03b9d6c
02747bf
03b9d6c
e405c05
03b9d6c
f272351
 
 
 
 
 
 
 
 
 
5492c3f
f272351
 
 
 
 
 
 
 
 
 
 
 
 
5492c3f
02747bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e148a04
03b9d6c
e148a04
03b9d6c
e148a04
f415382
 
03b9d6c
f415382
 
 
e148a04
03b9d6c
f415382
 
e148a04
 
 
f415382
 
 
 
 
 
 
 
 
 
 
 
02747bf
 
 
 
 
 
 
 
 
 
 
 
e8304d7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt

# Set page configuration
st.set_page_config(page_title="Career Insights", layout="wide")

# Load data
df = pd.read_csv("Teams.csv")

# Get unique player names
player_names = df["Player"].unique()

# Search box for filtering player names
search_query = st.text_input("Search Player Name:")
filtered_players = [name for name in player_names if search_query.lower() in name.lower()] if search_query else player_names
if len(filtered_players) == 0:
    st.warning("Player not found. Please try a different name.")

# Player selection dropdown
selected_player = st.selectbox("Select Player", filtered_players)

# Buttons for Batting and Bowling
show_batting = st.button("Show Batting Stats")
show_bowling = st.button("Show Bowling Stats")

if selected_player:
    player_data = df[df["Player"] == selected_player].iloc[0]
    labels = ["Test", "ODI", "T20", "IPL"]
    
    if show_batting:
        st.subheader(f"Batting Stats for {selected_player}")

        col1, col2 = st.columns(2)
        with col1:
            # Pie Chart - Matches Played
            matches = [
                player_data.get("Matches_Test", 0),
                player_data.get("Matches_ODI", 0),
                player_data.get("Matches_T20", 0),
                player_data.get("Matches_IPL", 0)
            ]
            fig, ax = plt.subplots()
            ax.pie(matches, labels=labels, autopct="%1.1f%%", startangle=90)
            ax.set_title(f"Matches Played by {selected_player}")
            st.pyplot(fig)

        with col2:
            # Bar Chart - Runs Scored
            batting_runs = [
                player_data.get("batting_Runs_Test", 0),
                player_data.get("batting_Runs_ODI", 0),
                player_data.get("batting_Runs_T20", 0),
                player_data.get("batting_Runs_IPL", 0)
            ]
            fig, ax = plt.subplots()
            ax.bar(labels, batting_runs, color=["gold", "green", "blue", "red"])
            ax.set_ylabel("Runs Scored")
            ax.set_title(f"Runs Scored by {selected_player}")
            st.pyplot(fig)

        col3, col4 = st.columns(2)
        with col3:
            # Stacked Bar Chart - 100s and 50s
            hundreds = [
                player_data.get("batting_100s_Test", 0),
                player_data.get("batting_100s_ODI", 0),
                player_data.get("batting_100s_T20", 0),
                player_data.get("batting_100s_IPL", 0)
            ]
            fifties = [
                player_data.get("batting_50s_Test", 0),
                player_data.get("batting_50s_ODI", 0),
                player_data.get("batting_50s_T20", 0),
                player_data.get("batting_50s_IPL", 0)
            ]
            fig, ax = plt.subplots()
            ax.bar(labels, hundreds, label="100s", color="gold")
            ax.bar(labels, fifties, label="50s", color="blue", bottom=hundreds)
            ax.set_ylabel("Count")
            ax.set_title(f"Centuries & Fifties by {selected_player}")
            ax.legend()
            st.pyplot(fig)

        with col4:
            # Line Chart - Strike Rate & Average
            strike_rate = [
                player_data.get("batting_SR_Test", 0),
                player_data.get("batting_SR_ODI", 0),
                player_data.get("batting_SR_T20", 0),
                player_data.get("batting_SR_IPL", 0)
            ]
            batting_avg = [
                player_data.get("batting_Average_Test", 0),
                player_data.get("batting_Average_ODI", 0),
                player_data.get("batting_Average_T20", 0),
                player_data.get("batting_Average_IPL", 0)
            ]
            fig, ax = plt.subplots()
            ax.plot(labels, strike_rate, marker='o', linestyle='-', color='red', label="Strike Rate")
            ax.plot(labels, batting_avg, marker='s', linestyle='--', color='green', label="Batting Average")
            ax.set_ylabel("Value")
            ax.set_title(f"Strike Rate & Batting Average of {selected_player}")
            ax.legend()
            st.pyplot(fig)

        # Bar Chart - Balls Faced
        batting_balls = [
            player_data.get("batting_Balls_Test", 0),
            player_data.get("batting_Balls_ODI", 0),
            player_data.get("batting_Balls_T20", 0),
            player_data.get("batting_Balls_IPL", 0)
        ]
        fig, ax = plt.subplots(figsize=(5,3))
        ax.bar(labels, batting_balls, color=["red", "green", "blue", "purple"])
        ax.set_ylabel("Balls Faced")
        ax.set_title(f"Balls Faced by {selected_player}")
        st.pyplot(fig)

    if show_bowling:
        st.subheader(f"Bowling Stats for {selected_player}")

        col1, col2 = st.columns(2)
        with col1:
            # Pie Chart - Bowling Averages
            bowling_avg = [
                0 if pd.isna(player_data.get("bowling_Test_Avg", 0)) else float(player_data.get("bowling_Test_Avg", 0)),
                0 if pd.isna(player_data.get("bowling_ODI_Avg", 0)) else float(player_data.get("bowling_ODI_Avg", 0)),
                0 if pd.isna(player_data.get("bowling_T20_Avg", 0)) else float(player_data.get("bowling_T20_Avg", 0)),
                0 if pd.isna(player_data.get("bowling_IPL_Avg", 0)) else float(player_data.get("bowling_IPL_Avg", 0))
            ]
            fig, ax = plt.subplots()
            ax.pie(bowling_avg, labels=labels, autopct="%1.1f%%", startangle=90)
            ax.set_title(f"Bowling Averages of {selected_player}")
            st.pyplot(fig)

        with col2:
            # Bar Chart - Bowling Innings
            bowling_innings = [
                player_data.get("bowling_Test_Innings", 0),
                player_data.get("bowling_ODI_Innings", 0),
                player_data.get("bowling_T20_Innings", 0),
                player_data.get("bowling_IPL_Innings", 0)
            ]
            fig, ax = plt.subplots()
            ax.bar(labels, bowling_innings, color=["blue", "green", "purple", "orange"])
            ax.set_ylabel("Innings Bowled")
            ax.set_title(f"Bowling Innings of {selected_player}")
            st.pyplot(fig)

        # Balls Bowled
        balls_bowled = [
            player_data.get("bowling_Test_Balls", 0),
            player_data.get("bowling_ODI_Balls", 0),
            player_data.get("bowling_T20_Balls", 0),
            player_data.get("bowling_IPL_Balls", 0)
        ]
        fig, ax = plt.subplots(figsize=(5, 3))
        ax.bar(labels, balls_bowled, color=["red", "yellow", "blue", "green"])
        ax.set_ylabel("Balls Bowled")
        ax.set_title(f"Balls Bowled by {selected_player}")
        st.pyplot(fig)