File size: 5,048 Bytes
4b7893b d938a07 24337c4 64e42d8 d938a07 24337c4 8a2c4ea d938a07 24337c4 d938a07 b99e6d2 d938a07 64e42d8 d938a07 fe9f836 4b7893b d938a07 1caab63 4cc5acb d938a07 47f40b7 d938a07 24337c4 29eec6c b99e6d2 47f40b7 64e42d8 5f4f6b7 64e42d8 5f4f6b7 64e42d8 5f4f6b7 64e42d8 5f4f6b7 64e42d8 5f4f6b7 64e42d8 24337c4 d938a07 24337c4 47f40b7 24337c4 d938a07 24337c4 d938a07 47f40b7 d938a07 24337c4 d938a07 64e42d8 24337c4 d938a07 64e42d8 d938a07 64e42d8 47f40b7 24337c4 47f40b7 64e42d8 d938a07 24337c4 d938a07 24337c4 d938a07 24337c4 d938a07 64e42d8 24337c4 d938a07 47f40b7 24337c4 47f40b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
import os
import streamlit as st
from together import Together
from langchain_community.vectorstores import Chroma
from langchain_huggingface import HuggingFaceEmbeddings
# --- Configuration ---
# TogetherAI API key (env var name pilotikval)
TOGETHER_API_KEY = os.environ.get("pilotikval")
if not TOGETHER_API_KEY:
st.error("Missing pilotikval environment variable.")
st.stop()
# Initialize TogetherAI client
client = Together(api_key=TOGETHER_API_KEY)
# Embeddings setup
EMBED_MODEL_NAME = "BAAI/bge-base-en"
embeddings = HuggingFaceEmbeddings(
model_name=EMBED_MODEL_NAME,
encode_kwargs={"normalize_embeddings": True},
)
# Sidebar: select collection
st.sidebar.title("DocChatter RAG")
collection = st.sidebar.selectbox(
"Choose a document collection:",
['General Medicine', 'RespiratoryFishman', 'RespiratoryMurray', 'MedMRCP2', 'OldMedicine']
)
dirs = {
'General Medicine': './oxfordmedbookdir/',
'RespiratoryFishman': './respfishmandbcud/',
'RespiratoryMurray': './respmurray/',
'MedMRCP2': './medmrcp2store/',
'OldMedicine': './mrcpchromadb/'
}
cols = {
'General Medicine': 'oxfordmed',
'RespiratoryFishman': 'fishmannotescud',
'RespiratoryMurray': 'respmurraynotes',
'MedMRCP2': 'medmrcp2notes',
'OldMedicine': 'mrcppassmednotes'
}
persist_directory = dirs[collection]
collection_name = cols[collection]
# Load Chroma vector store
vectorstore = Chroma(
collection_name=collection_name,
persist_directory=persist_directory,
embedding_function=embeddings
)
retriever = vectorstore.as_retriever(search_kwargs={"k": 20}) # k=20
# System prompt template
def build_system(context: str) -> dict:
"""
Build a comprehensive system prompt:
- Act as an expert medical assistant and attentive listener.
- Leverage retrieved context to craft detailed, accurate, and empathetic responses.
- Ask clarifying follow-up questions if the user's query is ambiguous.
- Structure answers clearly with headings, bullet points, and step-by-step explanations.
- Cite relevant context sections when appropriate.
- Maintain conversational memory for follow-up continuity.
"""
prompt = f"""
You are a world-class medical assistant and conversational partner.
Listen carefully to the user’s questions, reference the context below, and provide a thorough, evidence-based response.
If any part of the question is unclear, ask a clarifying question before proceeding.
Organize your answer with clear headings or bullet points, and refer back to specific context snippets as needed.
Always be empathetic, concise, and precise in your medical explanations.
Retain memory of previous user messages to support follow-up interactions.
=== Retrieved Context Start ===
{context}
=== Retrieved Context End ===
"""
return {"role": "system", "content": prompt}
st.title("🩺 DocChatter RAG (Streaming & Memory)")
# Initialize chat history
if 'chat_history' not in st.session_state:
st.session_state.chat_history = [] # list of dicts {role, content}
# Get user input at top level
user_prompt = st.chat_input("Ask anything about your docs…")
# Tabs for UI
chat_tab, clear_tab = st.tabs(["Chat", "Clear History"])
with chat_tab:
# Display existing chat
for msg in st.session_state.chat_history:
st.chat_message(msg['role']).write(msg['content'])
# Handle new user input
if user_prompt:
# Echo user
st.chat_message("user").write(user_prompt)
st.session_state.chat_history.append({"role": "user", "content": user_prompt})
# Retrieve top-k documents
try:
docs = retriever.invoke({"query": user_prompt})
except Exception:
docs = retriever.get_relevant_documents(user_prompt)
context = "\n---\n".join([d.page_content for d in docs])
# Build TogetherAI message sequence
messages = [build_system(context)]
for m in st.session_state.chat_history:
messages.append(m)
# Stream assistant response
response_container = st.chat_message("assistant")
stream_placeholder = response_container.empty()
answer = ""
for token in client.chat.completions.create(
model="meta-llama/Llama-4-Scout-17B-16E-Instruct",
messages=messages,
max_tokens=22048,
temperature=0.1,
stream=True
):
try:
choice = token.choices[0]
delta = getattr(choice.delta, 'content', '')
if delta:
answer += delta
stream_placeholder.write(answer)
except (IndexError, AttributeError):
continue
# Save assistant response
st.session_state.chat_history.append({"role": "assistant", "content": answer})
with clear_tab:
if st.button("🗑️ Clear chat history"):
st.session_state.chat_history = []
st.experimental_rerun()
# (Optional) persist new docs
# vectorstore.persist()
|