File size: 7,167 Bytes
7d1ac51
b518740
8ac08dc
b518740
 
 
de9232e
 
b518740
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d1ac51
b518740
7d1ac51
b518740
 
 
 
 
8ac08dc
b518740
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44def13
 
 
 
 
 
 
 
 
 
 
b518740
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import gradio as gr
from PIL import Image, ImageDraw, ImageFont
from ultralytics import YOLO
import spaces
import cv2
import numpy as np
import tempfile

@spaces.GPU
def yolo_inference(input_type, image, video, model_id, conf_threshold, iou_threshold, max_detection):
    if input_type == "Image":
        if image is None:
            width, height = 640, 480
            blank_image = Image.new("RGB", (width, height), color="white")
            draw = ImageDraw.Draw(blank_image)
            message = "No image provided"
            font = ImageFont.load_default(size=40)
            bbox = draw.textbbox((0, 0), message, font=font)
            text_width = bbox[2] - bbox[0]
            text_height = bbox[3] - bbox[1]
            text_x = (width - text_width) / 2
            text_y = (height - text_height) / 2
            draw.text((text_x, text_y), message, fill="black", font=font)
            return blank_image, None

        model = YOLO(model_id)
        results = model.predict(
            source=image,
            conf=conf_threshold,
            iou=iou_threshold,
            imgsz=640,
            max_det=max_detection,
            show_labels=True,
            show_conf=True,
        )
        for r in results:
            image_array = r.plot()
            annotated_image = Image.fromarray(image_array[..., ::-1])
        return annotated_image, None

    elif input_type == "Video":
        if video is None:
            width, height = 640, 480
            blank_image = Image.new("RGB", (width, height), color="white")
            draw = ImageDraw.Draw(blank_image)
            message = "No video provided"
            font = ImageFont.load_default(size=40)
            bbox = draw.textbbox((0, 0), message, font=font)
            text_width = bbox[2] - bbox[0]
            text_height = bbox[3] - bbox[1]
            text_x = (width - text_width) / 2
            text_y = (height - text_height) / 2
            draw.text((text_x, text_y), message, fill="black", font=font)
            temp_video_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name
            fourcc = cv2.VideoWriter_fourcc(*"mp4v")
            out = cv2.VideoWriter(temp_video_file, fourcc, 1, (width, height))
            frame = cv2.cvtColor(np.array(blank_image), cv2.COLOR_RGB2BGR)
            out.write(frame)
            out.release()
            return None, temp_video_file

        model = YOLO(model_id)
        cap = cv2.VideoCapture(video)
        fps = cap.get(cv2.CAP_PROP_FPS) if cap.get(cv2.CAP_PROP_FPS) > 0 else 25
        frames = []
        while True:
            ret, frame = cap.read()
            if not ret:
                break
            pil_frame = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
            results = model.predict(
                source=pil_frame,
                conf=conf_threshold,
                iou=iou_threshold,
                imgsz=640,
                max_det=max_detection,
                show_labels=True,
                show_conf=True,
            )
            for r in results:
                annotated_frame_array = r.plot()
                annotated_frame = cv2.cvtColor(annotated_frame_array, cv2.COLOR_BGR2RGB)
            frames.append(annotated_frame)
        cap.release()
        if len(frames) == 0:
            return None, None

        height_out, width_out, _ = frames[0].shape
        temp_video_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name
        fourcc = cv2.VideoWriter_fourcc(*"mp4v")
        out = cv2.VideoWriter(temp_video_file, fourcc, fps, (width_out, height_out))
        for f in frames:
            f_bgr = cv2.cvtColor(f, cv2.COLOR_RGB2BGR)
            out.write(f_bgr)
        out.release()
        return None, temp_video_file

    else:
        return None, None

def update_visibility(input_type):
    """
    Show/hide image/video input and output depending on input_type.
    """
    if input_type == "Image":
        # image, video, output_image, output_video
        return gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
    else:
        return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=True)

def yolo_inference_for_examples(image, model_id, conf_threshold, iou_threshold, max_detection):
    """
    This is called by gr.Examples. We force the radio to 'Image'
    and then do a standard image inference, returning both updated radio
    value and the annotated image.
    """
    annotated_image, _ = yolo_inference(
        input_type="Image",
        image=image,
        video=None,
        model_id=model_id,
        conf_threshold=conf_threshold,
        iou_threshold=iou_threshold,
        max_detection=max_detection
    )
    return gr.update(value="Image"), annotated_image

with gr.Blocks() as app:
    gr.Markdown("# Yolo11: Object Detection, Instance Segmentation, Pose/Keypoints, Oriented Detection, Classification")
    gr.Markdown("Upload image(s) or video(s) for inference using the latest Ultralytics YOLO11 models.")
    
    with gr.Row():
        with gr.Column():
            image = gr.Image(type="pil", label="Image", visible=True)
            video = gr.Video(label="Video", visible=False)
            input_type = gr.Radio(
                choices=["Image", "Video"],
                value="Image",
                label="Input Type",
            )
            model_id = gr.Dropdown(
                label="Model Name",
                choices=[
                    'yolo11n.pt', 'yolo11s.pt', 'yolo11m.pt', 'yolo11l.pt', 'yolo11x.pt', 
                    'yolo11n-seg.pt', 'yolo11s-seg.pt', 'yolo11m-seg.pt', 'yolo11l-seg.pt', 'yolo11x-seg.pt',
                    'yolo11n-pose.pt', 'yolo11s-pose.pt', 'yolo11m-pose.pt', 'yolo11l-pose.pt', 'yolo11x-pose.pt',
                    'yolo11n-obb.pt', 'yolo11s-obb.pt', 'yolo11m-obb.pt', 'yolo11l-obb.pt', 'yolo11x-obb.pt',
                    'yolo11n-cls.pt', 'yolo11s-cls.pt', 'yolo11m-cls.pt', 'yolo11l-cls.pt', 'yolo11x-cls.pt'
                ],
                value="yolo11n.pt",
            )
            conf_threshold = gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence Threshold")
            iou_threshold = gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU Threshold")
            max_detection = gr.Slider(minimum=1, maximum=300, step=1, value=300, label="Max Detection")
            infer_button = gr.Button("Detect Objects")
        with gr.Column():
            output_image = gr.Image(type="pil", label="Annotated Image", visible=True)
            output_video = gr.Video(label="Annotated Video", visible=False)
    
    # Toggle input/output visibility
    input_type.change(
        fn=update_visibility,
        inputs=input_type,
        outputs=[image, video, output_image, output_video],
    )
    
    # Main inference for button click
    infer_button.click(
        fn=yolo_inference,
        inputs=[input_type, image, video, model_id, conf_threshold, iou_threshold, max_detection],
        outputs=[output_image, output_video],
    )


if __name__ == '__main__':
    app.launch()