Spaces:
Running
Running
File size: 11,516 Bytes
52b8a27 a403423 4b172ec e6344ec a403423 e6344ec a403423 e6344ec a403423 e6344ec 4b172ec 52b8a27 a403423 e6344ec a403423 e6344ec a403423 e6344ec a403423 e6344ec a403423 e6344ec a403423 e6344ec a403423 e6344ec a403423 e6344ec a403423 e6344ec a403423 e6344ec 4b172ec a403423 e6344ec 4b172ec a403423 e6344ec 4b172ec e6344ec 4b172ec a403423 e6344ec a403423 e6344ec a403423 e6344ec a403423 e6344ec bc4f40b e6344ec a403423 4b172ec 6ea58c0 a403423 e6344ec a403423 e6344ec a403423 e6344ec a403423 e6344ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
import warnings
import numpy as np
import pandas as pd
import os
import json
import random
import gradio as gr
from sklearn.ensemble import IsolationForest, RandomForestClassifier, GradientBoostingClassifier
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.preprocessing import OneHotEncoder
from sklearn.neural_network import MLPClassifier
from sklearn.metrics import accuracy_score
from deap import base, creator, tools, algorithms
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset
warnings.filterwarnings('ignore', category=FutureWarning, module='huggingface_hub.file_download')
# Initialize Example Emotions Dataset
data = {
'context': [
'I am happy', 'I am sad', 'I am angry', 'I am excited', 'I am calm',
'I am feeling joyful', 'I am grieving', 'I am feeling peaceful', 'I am frustrated',
'I am determined', 'I feel resentment', 'I am feeling glorious', 'I am motivated',
'I am surprised', 'I am fearful', 'I am trusting', 'I feel disgust', 'I am optimistic',
'I am pessimistic', 'I feel bored', 'I am envious'
],
'emotion': [
'joy', 'sadness', 'anger', 'joy', 'calmness', 'joy', 'grief', 'calmness', 'anger',
'determination', 'resentment', 'glory', 'motivation', 'surprise', 'fear', 'trust',
'disgust', 'optimism', 'pessimism', 'boredom', 'envy'
]
}
df = pd.DataFrame(data)
# Encoding the contexts using One-Hot Encoding
encoder = OneHotEncoder(handle_unknown='ignore')
contexts_encoded = encoder.fit_transform(df[['context']]).toarray()
# Encoding emotions
emotions_target = df['emotion'].astype('category').cat.codes
emotion_classes = df['emotion'].astype('category').cat.categories
# Advanced Neural Network with PyTorch
class AdvancedNN(nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super(AdvancedNN, self).__init__()
self.layer1 = nn.Linear(input_size, hidden_size)
self.layer2 = nn.Linear(hidden_size, hidden_size)
self.layer3 = nn.Linear(hidden_size, num_classes)
self.relu = nn.ReLU()
self.dropout = nn.Dropout(0.2)
def forward(self, x):
x = self.relu(self.layer1(x))
x = self.dropout(x)
x = self.relu(self.layer2(x))
x = self.dropout(x)
x = self.layer3(x)
return x
# Train Advanced Neural Network
X_train, X_test, y_train, y_test = train_test_split(contexts_encoded, emotions_target, test_size=0.2, random_state=42)
input_size = X_train.shape[1]
hidden_size = 64
num_classes = len(emotion_classes)
model = AdvancedNN(input_size, hidden_size, num_classes)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
train_dataset = TensorDataset(torch.FloatTensor(X_train), torch.LongTensor(y_train))
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
num_epochs = 100
for epoch in range(num_epochs):
for batch_X, batch_y in train_loader:
outputs = model(batch_X)
loss = criterion(outputs, batch_y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Ensemble with Random Forest and Gradient Boosting
rf_model = RandomForestClassifier(n_estimators=100, random_state=42)
gb_model = GradientBoostingClassifier(n_estimators=100, random_state=42)
rf_model.fit(X_train, y_train)
gb_model.fit(X_train, y_train)
# Isolation Forest Anomaly Detection Model
historical_data = np.array([model(torch.FloatTensor(contexts_encoded)).argmax(1).numpy()]).T
isolation_forest = IsolationForest(contamination=0.1, random_state=42)
isolation_forest.fit(historical_data)
# Enhanced Emotional States
emotions = {
'joy': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
'pleasure': {'percentage': 10, 'motivation': 'selfish', 'intensity': 0},
'sadness': {'percentage': 10, 'motivation': 'negative', 'intensity': 0},
'grief': {'percentage': 10, 'motivation': 'negative', 'intensity': 0},
'anger': {'percentage': 10, 'motivation': 'traumatic or strong', 'intensity': 0},
'calmness': {'percentage': 10, 'motivation': 'neutral', 'intensity': 0},
'determination': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
'resentment': {'percentage': 10, 'motivation': 'negative', 'intensity': 0},
'glory': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
'motivation': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
'ideal_state': {'percentage': 100, 'motivation': 'balanced', 'intensity': 0},
'fear': {'percentage': 10, 'motivation': 'defensive', 'intensity': 0},
'surprise': {'percentage': 10, 'motivation': 'unexpected', 'intensity': 0},
'anticipation': {'percentage': 10, 'motivation': 'predictive', 'intensity': 0},
'trust': {'percentage': 10, 'motivation': 'reliable', 'intensity': 0},
'disgust': {'percentage': 10, 'motivation': 'repulsive', 'intensity': 0},
'optimism': {'percentage': 10, 'motivation': 'hopeful', 'intensity': 0},
'pessimism': {'percentage': 10, 'motivation': 'doubtful', 'intensity': 0},
'boredom': {'percentage': 10, 'motivation': 'indifferent', 'intensity': 0},
'envy': {'percentage': 10, 'motivation': 'jealous', 'intensity': 0}
}
total_percentage = 200
default_percentage = total_percentage / len(emotions)
for emotion in emotions:
emotions[emotion]['percentage'] = default_percentage
emotion_history_file = 'emotion_history.json'
def load_historical_data(file_path=emotion_history_file):
if os.path.exists(file_path):
with open(file_path, 'r') as file:
return json.load(file)
return []
def save_historical_data(historical_data, file_path=emotion_history_file):
with open(file_path, 'w') as file:
json.dump(historical_data, file)
emotion_history = load_historical_data
def update_emotion(emotion, percentage, intensity):
emotions['ideal_state']['percentage'] -= percentage
emotions[emotion]['percentage'] += percentage
emotions[emotion]['intensity'] = intensity
total_current = sum(e['percentage'] for e in emotions.values())
adjustment = total_percentage - total_current
emotions['ideal_state']['percentage'] += adjustment
def normalize_context(context):
return context.lower().strip()
# Advanced Genetic Algorithm for Emotion Evolution
def evolve_emotions():
def evaluate(individual):
ideal_state = individual[-1]
other_emotions = individual[:-1]
intensities = individual[-21:-1]
return (abs(ideal_state - 100),
sum(other_emotions),
max(intensities) - min(intensities))
creator.create("FitnessMulti", base.Fitness, weights=(-1.0, -1.0, -1.0))
creator.create("Individual", list, fitness=creator.FitnessMulti)
toolbox = base.Toolbox()
toolbox.register("attr_float", random.uniform, 0, 20)
toolbox.register("attr_intensity", random.uniform, 0, 10)
toolbox.register("individual", tools.initCycle, creator.Individual,
(toolbox.attr_float,) * (len(emotions) - 1) +
(toolbox.attr_intensity,) * len(emotions) +
(lambda: random.uniform(80, 120),),
n=1)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
toolbox.register("evaluate", evaluate)
toolbox.register("mate", tools.cxSimulatedBinaryBounded, low=0, up=120, eta=20.0)
toolbox.register("mutate", tools.mutPolynomialBounded, low=0, up=120, eta=20.0, indpb=0.1)
toolbox.register("select", tools.selNSGA2)
population = toolbox.population(n=100)
algorithms.eaMuPlusLambda(population, toolbox, mu=100, lambda_=100,
cxpb=0.7, mutpb=0.3, ngen=50, verbose=False)
best_individual = tools.selBest(population, k=1)[0]
for idx, emotion in enumerate(emotions.keys()):
if idx < len(emotions) - 1:
emotions[emotion]['percentage'] = best_individual[idx]
emotions[emotion]['intensity'] = best_individual[idx + len(emotions) - 1]
else:
emotions[emotion]['percentage'] = best_individual[-1]
# Initialize the pre-trained language model (BLOOM-1b7)
model_name = 'bigscience/bloom-1b7'
tokenizer = AutoTokenizer.from_pretrained(model_name)
lm_model = AutoModelForCausalLM.from_pretrained(model_name)
def generate_text(prompt, max_length=150):
input_ids = tokenizer.encode(prompt, return_tensors='pt')
output = lm_model.generate(
input_ids,
max_length=max_length,
num_return_sequences=1,
no_repeat_ngram_size=2,
do_sample=True,
top_k=50,
top_p=0.95,
temperature=0.7
)
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
return generated_text
sentiment_pipeline = pipeline("sentiment-analysis", model=model_name, tokenizer=tokenizer)
def get_sentiment(text):
result = sentiment_pipeline(text)[0]
return f"Sentiment: {result['label']}, Score: {result['score']:.4f}"
def get_emotional_response(context):
context = normalize_context(context)
context_encoded = encoder.transform([[context]]).toarray()
# Advanced NN prediction
nn_output = model(torch.FloatTensor(context_encoded))
nn_prediction = nn_output.argmax(1).item()
# Ensemble predictions
rf_prediction = rf_model.predict(context_encoded)[0]
gb_prediction = gb_model.predict(context_encoded)[0]
# Weighted ensemble
ensemble_prediction = (0.4 * nn_prediction + 0.3 * rf_prediction + 0.3 * gb_prediction)
predicted_emotion = emotion_classes[int(round(ensemble_prediction))]
# Anomaly detection
anomaly_score = isolation_forest.decision_function(np.array([[nn_prediction]]))
is_anomaly = anomaly_score < 0
# Calculate emotion intensity based on model confidence
nn_proba = torch.softmax(nn_output, dim=1).max().item()
rf_proba = rf_model.predict_proba(context_encoded).max()
gb_proba = gb_model.predict_proba(context_encoded).max()
intensity = (nn_proba + rf_proba + gb_proba) / 3 * 10 # Scale to 0-10
update_emotion(predicted_emotion, 20, intensity)
evolve_emotions()
emotion_history.append(emotions.copy())
save_historical_data(emotion_history)
response = f"Predicted Emotion: {predicted_emotion}\n"
response += f"Emotion Details: {emotions[predicted_emotion]}\n"
response += f"Anomaly Detected: {'Yes' if is_anomaly else 'No'}\n"
response += f"Emotion Intensity: {intensity:.2f}/10\n"
response += f"Current Emotional State: {json.dumps(emotions, indent=2)}"
return response
def process_input(input_text):
emotional_response = get_emotional_response(input_text)
sentiment = get_sentiment(input_text)
generated_text = generate_text(f"Based on the emotion analysis: {emotional_response}\nGenerate a response: {input_text}")
return f"{emotional_response}\n\nSentiment Analysis: {sentiment}\n\nGenerated Response: {generated_text}"
# Gradio Interface
iface = gr.Interface(
fn=process_input,
inputs="text",
outputs="text",
title="Advanced Emotion Analysis and Text Generation with BLOOM-1b7",
description="Enter a sentence for comprehensive emotion analysis, sentiment analysis, and context-aware text generation using advanced AI models."
)
if __name__ == "__main__":
iface.launch() |