Cain / app.py
Sephfox's picture
Update app.py
5b50796 verified
raw
history blame
13.5 kB
import warnings
import numpy as np
import pandas as pd
import os
import json
import random
import gradio as gr
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, IterableDataset
from sklearn.ensemble import IsolationForest, RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import OneHotEncoder
from sklearn.neural_network import MLPClassifier
from deap import base, creator, tools, algorithms
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, AutoModelForSequenceClassification
import gc
import multiprocessing as mp
from joblib import Parallel, delayed
warnings.filterwarnings('ignore', category=FutureWarning, module='huggingface_hub.file_download')
# Initialize Example Emotions Dataset
data = {
'context': [
'I am happy', 'I am sad', 'I am angry', 'I am excited', 'I am calm',
'I am feeling joyful', 'I am grieving', 'I am feeling peaceful', 'I am frustrated',
'I am determined', 'I feel resentment', 'I am feeling glorious', 'I am motivated',
'I am surprised', 'I am fearful', 'I am trusting', 'I feel disgust', 'I am optimistic',
'I am pessimistic', 'I feel bored', 'I am envious'
],
'emotion': [
'joy', 'sadness', 'anger', 'joy', 'calmness', 'joy', 'grief', 'calmness', 'anger',
'determination', 'resentment', 'glory', 'motivation', 'surprise', 'fear', 'trust',
'disgust', 'optimism', 'pessimism', 'boredom', 'envy'
]
}
df = pd.DataFrame(data)
# Encoding the contexts using One-Hot Encoding (memory-efficient)
encoder = OneHotEncoder(handle_unknown='ignore', sparse=True)
contexts_encoded = encoder.fit_transform(df[['context']])
# Encoding emotions
emotions_target = pd.Categorical(df['emotion']).codes
emotion_classes = pd.Categorical(df['emotion']).categories
# Memory-efficient Neural Network with PyTorch
class MemoryEfficientNN(nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super(MemoryEfficientNN, self).__init__()
self.layers = nn.Sequential(
nn.Embedding(input_size, hidden_size),
nn.ReLU(),
nn.Dropout(0.2),
nn.Linear(hidden_size, hidden_size),
nn.ReLU(),
nn.Dropout(0.2),
nn.Linear(hidden_size, num_classes)
)
def forward(self, x):
return self.layers(x.long())
# Memory-efficient dataset
class MemoryEfficientDataset(IterableDataset):
def __init__(self, X, y, batch_size):
self.X = X
self.y = torch.LongTensor(y) # Convert labels to long tensors
self.batch_size = batch_size
def __iter__(self):
for i in range(0, len(self.y), self.batch_size):
X_batch = self.X[i:i+self.batch_size].toarray()
y_batch = self.y[i:i+self.batch_size]
yield torch.FloatTensor(X_batch), y_batch
# Train Memory-Efficient Neural Network
X_train, X_test, y_train, y_test = train_test_split(contexts_encoded, emotions_target, test_size=0.2, random_state=42)
input_size = X_train.shape[1]
hidden_size = 64
num_classes = len(emotion_classes)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = MemoryEfficientNN(input_size, hidden_size, num_classes).to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
train_dataset = MemoryEfficientDataset(X_train, y_train, batch_size=32)
train_loader = DataLoader(train_dataset, batch_size=None, num_workers=4, pin_memory=True)
num_epochs = 100
for epoch in range(num_epochs):
for batch_X, batch_y in train_loader:
batch_X, batch_y = batch_X.to(device, non_blocking=True), batch_y.to(device, non_blocking=True)
outputs = model(batch_X)
loss = criterion(outputs, batch_y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
gc.collect() # Garbage collection after each epoch
# Ensemble with Random Forest (memory-efficient)
rf_model = RandomForestClassifier(n_estimators=50, random_state=42, n_jobs=-1)
rf_model.fit(X_train, y_train)
# Isolation Forest Anomaly Detection Model (memory-efficient)
isolation_forest = IsolationForest(contamination=0.1, random_state=42, n_jobs=-1, max_samples='auto')
isolation_forest.fit(X_train) # Fit the model before using it
# Enhanced Emotional States
emotions = {
'joy': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
'pleasure': {'percentage': 10, 'motivation': 'selfish', 'intensity': 0},
'sadness': {'percentage': 10, 'motivation': 'negative', 'intensity': 0},
'grief': {'percentage': 10, 'motivation': 'negative', 'intensity': 0},
'anger': {'percentage': 10, 'motivation': 'traumatic or strong', 'intensity': 0},
'calmness': {'percentage': 10, 'motivation': 'neutral', 'intensity': 0},
'determination': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
'resentment': {'percentage': 10, 'motivation': 'negative', 'intensity': 0},
'glory': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
'motivation': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
'ideal_state': {'percentage': 100, 'motivation': 'balanced', 'intensity': 0},
'fear': {'percentage': 10, 'motivation': 'defensive', 'intensity': 0},
'surprise': {'percentage': 10, 'motivation': 'unexpected', 'intensity': 0},
'anticipation': {'percentage': 10, 'motivation': 'predictive', 'intensity': 0},
'trust': {'percentage': 10, 'motivation': 'reliable', 'intensity': 0},
'disgust': {'percentage': 10, 'motivation': 'repulsive', 'intensity': 0},
'optimism': {'percentage': 10, 'motivation': 'hopeful', 'intensity': 0},
'pessimism': {'percentage': 10, 'motivation': 'doubtful', 'intensity': 0},
'boredom': {'percentage': 10, 'motivation': 'indifferent', 'intensity': 0},
'envy': {'percentage': 10, 'motivation': 'jealous', 'intensity': 0}
}
total_percentage = 200
emotion_history_file = 'emotion_history.json'
def load_historical_data(file_path=emotion_history_file):
if os.path.exists(file_path):
with open(file_path, 'r') as file:
return json.load(file)
return []
def save_historical_data(historical_data, file_path=emotion_history_file):
with open(file_path, 'w') as file:
json.dump(historical_data, file)
emotion_history = load_historical_data()
def update_emotion(emotion, percentage, intensity):
emotions['ideal_state']['percentage'] -= percentage
emotions[emotion]['percentage'] += percentage
emotions[emotion]['intensity'] = intensity
total_current = sum(e['percentage'] for e in emotions.values())
adjustment = total_percentage - total_current
emotions['ideal_state']['percentage'] += adjustment
def normalize_context(context):
return context.lower().strip()
# Memory-efficient genetic algorithm for emotion evolution
def evolve_emotions():
def evaluate(individual):
ideal_state = individual[-1]
other_emotions = individual[:-1]
intensities = individual[-21:-1]
return (abs(ideal_state - 100),
sum(other_emotions),
max(intensities) - min(intensities))
creator.create("FitnessMulti", base.Fitness, weights=(-1.0, -1.0, -1.0))
creator.create("Individual", list, fitness=creator.FitnessMulti)
toolbox = base.Toolbox()
toolbox.register("attr_float", random.uniform, 0, 20)
toolbox.register("attr_intensity", random.uniform, 0, 10)
toolbox.register("individual", tools.initCycle, creator.Individual,
(toolbox.attr_float,) * (len(emotions) - 1) +
(toolbox.attr_intensity,) * len(emotions) +
(lambda: 100,), n=1)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
toolbox.register("mate", tools.cxTwoPoint)
toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=1, indpb=0.2)
toolbox.register("select", tools.selNSGA2)
toolbox.register("evaluate", evaluate)
population = toolbox.population(n=100)
algorithms.eaMuPlusLambda(population, toolbox, mu=50, lambda_=100, cxpb=0.7, mutpb=0.2, ngen=100,
stats=None, halloffame=None, verbose=False)
best_individual = tools.selBest(population, k=1)[0]
emotion_values = best_individual[:len(emotions)-1]
intensities = best_individual[-21:-1]
ideal_state = best_individual[-1]
for i, emotion in enumerate(emotions):
emotions[emotion]['percentage'] = emotion_values[i]
emotions[emotion]['intensity'] = intensities[i]
emotions['ideal_state']['percentage'] = ideal_state
# Lazy loading for the language models
_distilgpt3_tokenizer = None
_distilgpt3_lm_model = None
def get_distilgpt3_model():
global _distilgpt3_tokenizer, _distilgpt3_lm_model
if _distilgpt3_tokenizer is None or _distilgpt3_lm_model is None:
distilgpt3_model_name = 'distilgpt2' # Replace with the fine-tuned DistilGPT-3 model name
_distilgpt3_tokenizer = AutoTokenizer.from_pretrained(distilgpt3_model_name)
_distilgpt3_lm_model = AutoModelForCausalLM.from_pretrained(distilgpt3_model_name, device_map="auto", low_cpu_mem_usage=True)
return _distilgpt3_tokenizer, _distilgpt3_lm_model
_bloom_tokenizer = None
_bloom_lm_model = None
def get_bloom_model():
global _bloom_tokenizer, _bloom_lm_model
if _bloom_tokenizer is None or _bloom_lm_model is None:
bloom_model_name = 'bigscience/bloom-1b7'
_bloom_tokenizer = AutoTokenizer.from_pretrained(bloom_model_name)
_bloom_lm_model = AutoModelForCausalLM.from_pretrained(bloom_model_name, device_map="auto", low_cpu_mem_usage=True)
return _bloom_tokenizer, _bloom_lm_model
def generate_text(prompt, max_length=100, model_type='distilgpt3'):
if model_type == 'distilgpt3':
distilgpt3_tokenizer, distilgpt3_lm_model = get_distilgpt3_model()
input_ids = distilgpt3_tokenizer.encode(prompt, return_tensors='pt').to(distilgpt3_lm_model.device)
with torch.no_grad():
output = distilgpt3_lm_model.generate(
input_ids,
max_length=max_length,
num_return_sequences=1,
no_repeat_ngram_size=2,
do_sample=True,
top_k=50,
top_p=0.95,
temperature=0.7
)
generated_text = distilgpt3_tokenizer.decode(output[0], skip_special_tokens=True)
elif model_type == 'bloom':
bloom_tokenizer, bloom_lm_model = get_bloom_model()
input_ids = bloom_tokenizer.encode(prompt, return_tensors='pt').to(bloom_lm_model.device)
with torch.no_grad():
output = bloom_lm_model.generate(
input_ids,
max_length=max_length,
num_return_sequences=1,
no_repeat_ngram_size=2,
do_sample=True,
top_k=50,
top_p=0.95,
temperature=0.7
)
generated_text = bloom_tokenizer.decode(output[0], skip_special_tokens=True)
else:
raise ValueError("Invalid model type. Choose 'distilgpt3' or 'bloom'.")
return generated_text
model_name = "distilbert-base-uncased-finetuned-sst-2-english"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
sentiment_pipeline = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
def get_sentiment(text):
result = sentiment_pipeline(text)[0]
return f"Sentiment: {result['label']}, Score: {result['score']:.4f}"
def process_input(text):
try:
normalized_text = normalize_context(text)
encoded_text = encoder.transform([[normalized_text]])
rf_prediction = rf_model.predict(encoded_text)[0]
isolation_score = isolation_forest.decision_function(encoded_text)[0]
nn_output = model(torch.LongTensor(encoded_text.toarray()).to(device, non_blocking=True))
nn_prediction = nn_output.argmax(dim=1).item()
predicted_emotion = emotion_classes[rf_prediction]
sentiment_score = isolation_score
distilgpt3_generated_text = generate_text(normalized_text, model_type='distilgpt3')
bloom_generated_text = generate_text(normalized_text, model_type='bloom')
historical_data = load_historical_data()
historical_data.append({
'context': text,
'predicted_emotion': predicted_emotion,
'sentiment_score': sentiment_score,
'distilgpt3_generated_text': distilgpt3_generated_text,
'bloom_generated_text': bloom_generated_text
})
save_historical_data(historical_data)
return predicted_emotion, sentiment_score, distilgpt3_generated_text, bloom_generated_text
except Exception as e:
error_message = f"An error occurred: {str(e)}"
print(error_message) # Logging the error
return error_message, error_message, error_message, error_message
iface = gr.Interface(
fn=process_input,
inputs="text",
outputs=[
gr.Textbox(label="Emotional Response"),
gr.Textbox(label="Sentiment Response"),
gr.Textbox(label="DistilGPT-3 Generated Text"),
gr.Textbox(label="BLOOM Generated Text")
],
live=True
)
iface.launch(share=True)