Spaces:
Running
Running
File size: 13,455 Bytes
5b50796 ff6946f a403423 a6dbe30 e6344ec a403423 e6344ec a403423 12805bd a6dbe30 12805bd e6344ec 4b172ec a403423 e6344ec 6148fb4 e6344ec 53f69b8 e6344ec 53f69b8 4b172ec a403423 53f69b8 b6382cd 1a498d3 b6382cd 1a498d3 b6382cd 1a498d3 b6382cd 1a498d3 b6382cd 1a498d3 b6382cd 1a498d3 b6382cd 1a498d3 b6382cd 53f69b8 1a498d3 342b7bb 53f69b8 5b50796 b6382cd 53f69b8 1a498d3 53f69b8 1a498d3 53f69b8 b6382cd faa570b e6344ec 7292376 6148fb4 1a498d3 c8ab728 53f69b8 faa570b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
import warnings
import numpy as np
import pandas as pd
import os
import json
import random
import gradio as gr
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, IterableDataset
from sklearn.ensemble import IsolationForest, RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import OneHotEncoder
from sklearn.neural_network import MLPClassifier
from deap import base, creator, tools, algorithms
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, AutoModelForSequenceClassification
import gc
import multiprocessing as mp
from joblib import Parallel, delayed
warnings.filterwarnings('ignore', category=FutureWarning, module='huggingface_hub.file_download')
# Initialize Example Emotions Dataset
data = {
'context': [
'I am happy', 'I am sad', 'I am angry', 'I am excited', 'I am calm',
'I am feeling joyful', 'I am grieving', 'I am feeling peaceful', 'I am frustrated',
'I am determined', 'I feel resentment', 'I am feeling glorious', 'I am motivated',
'I am surprised', 'I am fearful', 'I am trusting', 'I feel disgust', 'I am optimistic',
'I am pessimistic', 'I feel bored', 'I am envious'
],
'emotion': [
'joy', 'sadness', 'anger', 'joy', 'calmness', 'joy', 'grief', 'calmness', 'anger',
'determination', 'resentment', 'glory', 'motivation', 'surprise', 'fear', 'trust',
'disgust', 'optimism', 'pessimism', 'boredom', 'envy'
]
}
df = pd.DataFrame(data)
# Encoding the contexts using One-Hot Encoding (memory-efficient)
encoder = OneHotEncoder(handle_unknown='ignore', sparse=True)
contexts_encoded = encoder.fit_transform(df[['context']])
# Encoding emotions
emotions_target = pd.Categorical(df['emotion']).codes
emotion_classes = pd.Categorical(df['emotion']).categories
# Memory-efficient Neural Network with PyTorch
class MemoryEfficientNN(nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super(MemoryEfficientNN, self).__init__()
self.layers = nn.Sequential(
nn.Embedding(input_size, hidden_size),
nn.ReLU(),
nn.Dropout(0.2),
nn.Linear(hidden_size, hidden_size),
nn.ReLU(),
nn.Dropout(0.2),
nn.Linear(hidden_size, num_classes)
)
def forward(self, x):
return self.layers(x.long())
# Memory-efficient dataset
class MemoryEfficientDataset(IterableDataset):
def __init__(self, X, y, batch_size):
self.X = X
self.y = torch.LongTensor(y) # Convert labels to long tensors
self.batch_size = batch_size
def __iter__(self):
for i in range(0, len(self.y), self.batch_size):
X_batch = self.X[i:i+self.batch_size].toarray()
y_batch = self.y[i:i+self.batch_size]
yield torch.FloatTensor(X_batch), y_batch
# Train Memory-Efficient Neural Network
X_train, X_test, y_train, y_test = train_test_split(contexts_encoded, emotions_target, test_size=0.2, random_state=42)
input_size = X_train.shape[1]
hidden_size = 64
num_classes = len(emotion_classes)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = MemoryEfficientNN(input_size, hidden_size, num_classes).to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
train_dataset = MemoryEfficientDataset(X_train, y_train, batch_size=32)
train_loader = DataLoader(train_dataset, batch_size=None, num_workers=4, pin_memory=True)
num_epochs = 100
for epoch in range(num_epochs):
for batch_X, batch_y in train_loader:
batch_X, batch_y = batch_X.to(device, non_blocking=True), batch_y.to(device, non_blocking=True)
outputs = model(batch_X)
loss = criterion(outputs, batch_y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
gc.collect() # Garbage collection after each epoch
# Ensemble with Random Forest (memory-efficient)
rf_model = RandomForestClassifier(n_estimators=50, random_state=42, n_jobs=-1)
rf_model.fit(X_train, y_train)
# Isolation Forest Anomaly Detection Model (memory-efficient)
isolation_forest = IsolationForest(contamination=0.1, random_state=42, n_jobs=-1, max_samples='auto')
isolation_forest.fit(X_train) # Fit the model before using it
# Enhanced Emotional States
emotions = {
'joy': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
'pleasure': {'percentage': 10, 'motivation': 'selfish', 'intensity': 0},
'sadness': {'percentage': 10, 'motivation': 'negative', 'intensity': 0},
'grief': {'percentage': 10, 'motivation': 'negative', 'intensity': 0},
'anger': {'percentage': 10, 'motivation': 'traumatic or strong', 'intensity': 0},
'calmness': {'percentage': 10, 'motivation': 'neutral', 'intensity': 0},
'determination': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
'resentment': {'percentage': 10, 'motivation': 'negative', 'intensity': 0},
'glory': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
'motivation': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
'ideal_state': {'percentage': 100, 'motivation': 'balanced', 'intensity': 0},
'fear': {'percentage': 10, 'motivation': 'defensive', 'intensity': 0},
'surprise': {'percentage': 10, 'motivation': 'unexpected', 'intensity': 0},
'anticipation': {'percentage': 10, 'motivation': 'predictive', 'intensity': 0},
'trust': {'percentage': 10, 'motivation': 'reliable', 'intensity': 0},
'disgust': {'percentage': 10, 'motivation': 'repulsive', 'intensity': 0},
'optimism': {'percentage': 10, 'motivation': 'hopeful', 'intensity': 0},
'pessimism': {'percentage': 10, 'motivation': 'doubtful', 'intensity': 0},
'boredom': {'percentage': 10, 'motivation': 'indifferent', 'intensity': 0},
'envy': {'percentage': 10, 'motivation': 'jealous', 'intensity': 0}
}
total_percentage = 200
emotion_history_file = 'emotion_history.json'
def load_historical_data(file_path=emotion_history_file):
if os.path.exists(file_path):
with open(file_path, 'r') as file:
return json.load(file)
return []
def save_historical_data(historical_data, file_path=emotion_history_file):
with open(file_path, 'w') as file:
json.dump(historical_data, file)
emotion_history = load_historical_data()
def update_emotion(emotion, percentage, intensity):
emotions['ideal_state']['percentage'] -= percentage
emotions[emotion]['percentage'] += percentage
emotions[emotion]['intensity'] = intensity
total_current = sum(e['percentage'] for e in emotions.values())
adjustment = total_percentage - total_current
emotions['ideal_state']['percentage'] += adjustment
def normalize_context(context):
return context.lower().strip()
# Memory-efficient genetic algorithm for emotion evolution
def evolve_emotions():
def evaluate(individual):
ideal_state = individual[-1]
other_emotions = individual[:-1]
intensities = individual[-21:-1]
return (abs(ideal_state - 100),
sum(other_emotions),
max(intensities) - min(intensities))
creator.create("FitnessMulti", base.Fitness, weights=(-1.0, -1.0, -1.0))
creator.create("Individual", list, fitness=creator.FitnessMulti)
toolbox = base.Toolbox()
toolbox.register("attr_float", random.uniform, 0, 20)
toolbox.register("attr_intensity", random.uniform, 0, 10)
toolbox.register("individual", tools.initCycle, creator.Individual,
(toolbox.attr_float,) * (len(emotions) - 1) +
(toolbox.attr_intensity,) * len(emotions) +
(lambda: 100,), n=1)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
toolbox.register("mate", tools.cxTwoPoint)
toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=1, indpb=0.2)
toolbox.register("select", tools.selNSGA2)
toolbox.register("evaluate", evaluate)
population = toolbox.population(n=100)
algorithms.eaMuPlusLambda(population, toolbox, mu=50, lambda_=100, cxpb=0.7, mutpb=0.2, ngen=100,
stats=None, halloffame=None, verbose=False)
best_individual = tools.selBest(population, k=1)[0]
emotion_values = best_individual[:len(emotions)-1]
intensities = best_individual[-21:-1]
ideal_state = best_individual[-1]
for i, emotion in enumerate(emotions):
emotions[emotion]['percentage'] = emotion_values[i]
emotions[emotion]['intensity'] = intensities[i]
emotions['ideal_state']['percentage'] = ideal_state
# Lazy loading for the language models
_distilgpt3_tokenizer = None
_distilgpt3_lm_model = None
def get_distilgpt3_model():
global _distilgpt3_tokenizer, _distilgpt3_lm_model
if _distilgpt3_tokenizer is None or _distilgpt3_lm_model is None:
distilgpt3_model_name = 'distilgpt2' # Replace with the fine-tuned DistilGPT-3 model name
_distilgpt3_tokenizer = AutoTokenizer.from_pretrained(distilgpt3_model_name)
_distilgpt3_lm_model = AutoModelForCausalLM.from_pretrained(distilgpt3_model_name, device_map="auto", low_cpu_mem_usage=True)
return _distilgpt3_tokenizer, _distilgpt3_lm_model
_bloom_tokenizer = None
_bloom_lm_model = None
def get_bloom_model():
global _bloom_tokenizer, _bloom_lm_model
if _bloom_tokenizer is None or _bloom_lm_model is None:
bloom_model_name = 'bigscience/bloom-1b7'
_bloom_tokenizer = AutoTokenizer.from_pretrained(bloom_model_name)
_bloom_lm_model = AutoModelForCausalLM.from_pretrained(bloom_model_name, device_map="auto", low_cpu_mem_usage=True)
return _bloom_tokenizer, _bloom_lm_model
def generate_text(prompt, max_length=100, model_type='distilgpt3'):
if model_type == 'distilgpt3':
distilgpt3_tokenizer, distilgpt3_lm_model = get_distilgpt3_model()
input_ids = distilgpt3_tokenizer.encode(prompt, return_tensors='pt').to(distilgpt3_lm_model.device)
with torch.no_grad():
output = distilgpt3_lm_model.generate(
input_ids,
max_length=max_length,
num_return_sequences=1,
no_repeat_ngram_size=2,
do_sample=True,
top_k=50,
top_p=0.95,
temperature=0.7
)
generated_text = distilgpt3_tokenizer.decode(output[0], skip_special_tokens=True)
elif model_type == 'bloom':
bloom_tokenizer, bloom_lm_model = get_bloom_model()
input_ids = bloom_tokenizer.encode(prompt, return_tensors='pt').to(bloom_lm_model.device)
with torch.no_grad():
output = bloom_lm_model.generate(
input_ids,
max_length=max_length,
num_return_sequences=1,
no_repeat_ngram_size=2,
do_sample=True,
top_k=50,
top_p=0.95,
temperature=0.7
)
generated_text = bloom_tokenizer.decode(output[0], skip_special_tokens=True)
else:
raise ValueError("Invalid model type. Choose 'distilgpt3' or 'bloom'.")
return generated_text
model_name = "distilbert-base-uncased-finetuned-sst-2-english"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
sentiment_pipeline = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
def get_sentiment(text):
result = sentiment_pipeline(text)[0]
return f"Sentiment: {result['label']}, Score: {result['score']:.4f}"
def process_input(text):
try:
normalized_text = normalize_context(text)
encoded_text = encoder.transform([[normalized_text]])
rf_prediction = rf_model.predict(encoded_text)[0]
isolation_score = isolation_forest.decision_function(encoded_text)[0]
nn_output = model(torch.LongTensor(encoded_text.toarray()).to(device, non_blocking=True))
nn_prediction = nn_output.argmax(dim=1).item()
predicted_emotion = emotion_classes[rf_prediction]
sentiment_score = isolation_score
distilgpt3_generated_text = generate_text(normalized_text, model_type='distilgpt3')
bloom_generated_text = generate_text(normalized_text, model_type='bloom')
historical_data = load_historical_data()
historical_data.append({
'context': text,
'predicted_emotion': predicted_emotion,
'sentiment_score': sentiment_score,
'distilgpt3_generated_text': distilgpt3_generated_text,
'bloom_generated_text': bloom_generated_text
})
save_historical_data(historical_data)
return predicted_emotion, sentiment_score, distilgpt3_generated_text, bloom_generated_text
except Exception as e:
error_message = f"An error occurred: {str(e)}"
print(error_message) # Logging the error
return error_message, error_message, error_message, error_message
iface = gr.Interface(
fn=process_input,
inputs="text",
outputs=[
gr.Textbox(label="Emotional Response"),
gr.Textbox(label="Sentiment Response"),
gr.Textbox(label="DistilGPT-3 Generated Text"),
gr.Textbox(label="BLOOM Generated Text")
],
live=True
)
iface.launch(share=True) |