Spaces:
Running
Running
import warnings | |
import numpy as np | |
import pandas as pd | |
import os | |
import json | |
import random | |
import gradio as gr | |
import torch | |
import torch.nn as nn | |
import torch.optim as optim | |
from torch.utils.data import DataLoader, IterableDataset | |
from sklearn.ensemble import IsolationForest, RandomForestClassifier | |
from sklearn.model_selection import train_test_split | |
from sklearn.preprocessing import OneHotEncoder | |
from sklearn.neural_network import MLPClassifier | |
from deap import base, creator, tools, algorithms | |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, AutoModelForSequenceClassification | |
import gc | |
import multiprocessing as mp | |
from joblib import Parallel, delayed | |
warnings.filterwarnings('ignore', category=FutureWarning, module='huggingface_hub.file_download') | |
# Initialize Example Emotions Dataset | |
data = { | |
'context': [ | |
'I am happy', 'I am sad', 'I am angry', 'I am excited', 'I am calm', | |
'I am feeling joyful', 'I am grieving', 'I am feeling peaceful', 'I am frustrated', | |
'I am determined', 'I feel resentment', 'I am feeling glorious', 'I am motivated', | |
'I am surprised', 'I am fearful', 'I am trusting', 'I feel disgust', 'I am optimistic', | |
'I am pessimistic', 'I feel bored', 'I am envious' | |
], | |
'emotion': [ | |
'joy', 'sadness', 'anger', 'joy', 'calmness', 'joy', 'grief', 'calmness', 'anger', | |
'determination', 'resentment', 'glory', 'motivation', 'surprise', 'fear', 'trust', | |
'disgust', 'optimism', 'pessimism', 'boredom', 'envy' | |
] | |
} | |
df = pd.DataFrame(data) | |
# Encoding the contexts using One-Hot Encoding (memory-efficient) | |
encoder = OneHotEncoder(handle_unknown='ignore', sparse=True) | |
contexts_encoded = encoder.fit_transform(df[['context']]) | |
# Encoding emotions | |
emotions_target = pd.Categorical(df['emotion']).codes | |
emotion_classes = pd.Categorical(df['emotion']).categories | |
# Load pre-trained BERT model for emotion prediction | |
emotion_prediction_model = AutoModelForSequenceClassification.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion") | |
emotion_prediction_tokenizer = AutoTokenizer.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion") | |
# Lazy loading for the fine-tuned language model | |
_finetuned_lm_tokenizer = None | |
_finetuned_lm_model = None | |
def get_finetuned_lm_model(): | |
global _finetuned_lm_tokenizer, _finetuned_lm_model | |
if _finetuned_lm_tokenizer is None or _finetuned_lm_model is None: | |
finetuned_lm_model_name = "microsoft/DialoGPT-large" # Replace with your fine-tuned language model name | |
_finetuned_lm_tokenizer = AutoTokenizer.from_pretrained(finetuned_lm_model_name) | |
_finetuned_lm_model = AutoModelForCausalLM.from_pretrained(finetuned_lm_model_name, device_map="auto", low_cpu_mem_usage=True) | |
return _finetuned_lm_tokenizer, _finetuned_lm_model | |
# Enhanced Emotional States | |
emotions = { | |
'joy': {'percentage': 10, 'motivation': 'positive', 'intensity': 0}, | |
'pleasure': {'percentage': 10, 'motivation': 'selfish', 'intensity': 0}, | |
'sadness': {'percentage': 10, 'motivation': 'negative', 'intensity': 0}, | |
'grief': {'percentage': 10, 'motivation': 'negative', 'intensity': 0}, | |
'anger': {'percentage': 10, 'motivation': 'traumatic or strong', 'intensity': 0}, | |
'calmness': {'percentage': 10, 'motivation': 'neutral', 'intensity': 0}, | |
'determination': {'percentage': 10, 'motivation': 'positive', 'intensity': 0}, | |
'resentment': {'percentage': 10, 'motivation': 'negative', 'intensity': 0}, | |
'glory': {'percentage': 10, 'motivation': 'positive', 'intensity': 0}, | |
'motivation': {'percentage': 10, 'motivation': 'positive', 'intensity': 0}, | |
'ideal_state': {'percentage': 100, 'motivation': 'balanced', 'intensity': 0}, | |
'fear': {'percentage': 10, 'motivation': 'defensive', 'intensity': 0}, | |
'surprise': {'percentage': 10, 'motivation': 'unexpected', 'intensity': 0}, | |
'anticipation': {'percentage': 10, 'motivation': 'predictive', 'intensity': 0}, | |
'trust': {'percentage': 10, 'motivation': 'reliable', 'intensity': 0}, | |
'disgust': {'percentage': 10, 'motivation': 'repulsive', 'intensity': 0}, | |
'optimism': {'percentage': 10, 'motivation': 'hopeful', 'intensity': 0}, | |
'pessimism': {'percentage': 10, 'motivation': 'doubtful', 'intensity': 0}, | |
'boredom': {'percentage': 10, 'motivation': 'indifferent', 'intensity': 0}, | |
'envy': {'percentage': 10, 'motivation': 'jealous', 'intensity': 0} | |
} | |
total_percentage = 200 | |
emotion_history_file = 'emotion_history.json' | |
def load_historical_data(file_path=emotion_history_file): | |
if os.path.exists(file_path): | |
with open(file_path, 'r') as file: | |
return json.load(file) | |
return [] | |
def save_historical_data(historical_data, file_path=emotion_history_file): | |
with open(file_path, 'w') as file: | |
json.dump(historical_data, file) | |
emotion_history = load_historical_data() | |
def update_emotion(emotion, percentage, intensity): | |
emotions['ideal_state']['percentage'] -= percentage | |
emotions[emotion]['percentage'] += percentage | |
emotions[emotion]['intensity'] = intensity | |
total_current = sum(e['percentage'] for e in emotions.values()) | |
adjustment = total_percentage - total_current | |
emotions['ideal_state']['percentage'] += adjustment | |
def normalize_context(context): | |
return context.lower().strip() | |
# Memory-efficient genetic algorithm for emotion evolution | |
def evolve_emotions(): | |
def evaluate(individual): | |
ideal_state = individual[-1] | |
other_emotions = individual[:-1] | |
intensities = individual[-21:-1] | |
return (abs(ideal_state - 100), | |
sum(other_emotions), | |
max(intensities) - min(intensities)) | |
creator.create("FitnessMulti", base.Fitness, weights=(-1.0, -1.0, -1.0)) | |
creator.create("Individual", list, fitness=creator.FitnessMulti) | |
toolbox = base.Toolbox() | |
toolbox.register("attr_float", random.uniform, 0, 20) | |
toolbox.register("attr_intensity", random.uniform, 0, 10) | |
toolbox.register("individual", tools.initCycle, creator.Individual, | |
(toolbox.attr_float,) * (len(emotions) - 1) + | |
(toolbox.attr_intensity,) * len(emotions) + | |
(lambda: 100,), n=1) | |
toolbox.register("population", tools.initRepeat, list, toolbox.individual) | |
toolbox.register("mate", tools.cxTwoPoint) | |
toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=1, indpb=0.2) | |
toolbox.register("select", tools.selNSGA2) | |
toolbox.register("evaluate", evaluate) | |
population = toolbox.population(n=100) | |
algorithms.eaMuPlusLambda(population, toolbox, mu=50, lambda_=100, cxpb=0.7, mutpb=0.2, ngen=100, | |
stats=None, halloffame=None, verbose=False) | |
best_individual = tools.selBest(population, k=1)[0] | |
emotion_values = best_individual[:len(emotions)-1] | |
intensities = best_individual[-21:-1] | |
ideal_state = best_individual[-1] | |
for i, emotion in enumerate(emotions): | |
emotions[emotion]['percentage'] = emotion_values[i] | |
emotions[emotion]['intensity'] = intensities[i] | |
emotions['ideal_state']['percentage'] = ideal_state | |
def predict_emotion(context): | |
emotion_prediction_pipeline = pipeline('text-classification', model=emotion_prediction_model, tokenizer=emotion_prediction_tokenizer, top_k=None) | |
predictions = emotion_prediction_pipeline(context) | |
emotion_scores = predictions[0] | |
emotion_pred = emotion_classes[np.argmax(emotion_scores)] | |
return emotion_pred | |
def generate_text(prompt, max_length=100, emotion=None): | |
finetuned_lm_tokenizer, finetuned_lm_model = get_finetuned_lm_model() | |
input_ids = finetuned_lm_tokenizer.encode(prompt, return_tensors='pt').to(finetuned_lm_model.device) | |
if emotion is not None: | |
emotion_intensity = emotions[emotion]['intensity'] | |
top_p = 0.95 - (emotion_intensity / 10) # Adjust top_p based on emotion intensity | |
temperature = 0.7 + (emotion_intensity / 5) # Adjust temperature based on emotion intensity | |
else: | |
top_p = 0.95 | |
temperature = 0.7 | |
with torch.no_grad(): | |
output = finetuned_lm_model.generate( | |
input_ids, | |
max_length=max_length, | |
num_return_sequences=1, | |
no_repeat_ngram_size=2, | |
do_sample=True, | |
top_k=50, | |
top_p=top_p, | |
temperature=temperature | |
) | |
generated_text = finetuned_lm_tokenizer.decode(output[0], skip_special_tokens=True) | |
return generated_text | |
def generate_response(context, emotion=None): | |
prompt = context | |
generated_text = generate_text(prompt, emotion=emotion) | |
return generated_text | |
with gr.Blocks() as demo: | |
gr.Markdown("# Emotion-Aware Language Model") | |
context_input = gr.Textbox(label="Enter a context") | |
predict_btn = gr.Button("Predict Emotion and Generate Text") | |
with gr.Row(): | |
emotion_output = gr.Textbox(label="Predicted Emotion", show_label=True) | |
generated_text_output = gr.Textbox(label="Generated Text", show_label=True) | |
predict_btn.click(fn=lambda context: (predict_emotion(context), generate_response(context, emotion=predict_emotion(context))), inputs=context_input, outputs=[emotion_output, generated_text_output]) | |
demo.launch(share=True) |