File size: 9,322 Bytes
5b50796
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88945ca
 
 
 
5b50796
 
 
 
aaf362d
1978fc5
88945ca
5b50796
aaf362d
88945ca
 
 
 
 
 
 
 
 
5b50796
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff6946f
a403423
 
 
 
 
 
 
 
 
 
 
a6dbe30
 
e6344ec
a403423
 
e6344ec
a403423
 
 
 
 
 
 
 
12805bd
a6dbe30
12805bd
 
 
 
 
 
 
 
e6344ec
 
4b172ec
a403423
e6344ec
 
 
e153d74
e6344ec
6148fb4
e6344ec
53f69b8
 
e6344ec
53f69b8
 
 
 
 
4b172ec
a403423
53f69b8
 
 
 
 
 
 
 
 
 
aaf362d
e153d74
aaf362d
 
e153d74
aaf362d
 
 
 
 
 
 
 
 
 
b6382cd
aaf362d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6382cd
 
aaf362d
 
 
 
faa570b
aaf362d
 
 
 
 
 
 
4031169
 
aaf362d
 
 
e153d74
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import warnings
import numpy as np
import pandas as pd
import os
import json
import random
import gradio as gr
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, IterableDataset
from sklearn.ensemble import IsolationForest, RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import OneHotEncoder
from sklearn.neural_network import MLPClassifier
from deap import base, creator, tools, algorithms
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, AutoModelForSequenceClassification
import gc
import multiprocessing as mp
from joblib import Parallel, delayed

warnings.filterwarnings('ignore', category=FutureWarning, module='huggingface_hub.file_download')

# Initialize Example Emotions Dataset
data = {
    'context': [
        'I am happy', 'I am sad', 'I am angry', 'I am excited', 'I am calm',
        'I am feeling joyful', 'I am grieving', 'I am feeling peaceful', 'I am frustrated',
        'I am determined', 'I feel resentment', 'I am feeling glorious', 'I am motivated',
        'I am surprised', 'I am fearful', 'I am trusting', 'I feel disgust', 'I am optimistic',
        'I am pessimistic', 'I feel bored', 'I am envious'
    ],
    'emotion': [
        'joy', 'sadness', 'anger', 'joy', 'calmness', 'joy', 'grief', 'calmness', 'anger',
        'determination', 'resentment', 'glory', 'motivation', 'surprise', 'fear', 'trust',
        'disgust', 'optimism', 'pessimism', 'boredom', 'envy'
    ]
}
df = pd.DataFrame(data)

# Encoding the contexts using One-Hot Encoding (memory-efficient)
encoder = OneHotEncoder(handle_unknown='ignore', sparse=True)
contexts_encoded = encoder.fit_transform(df[['context']])

# Encoding emotions
emotions_target = pd.Categorical(df['emotion']).codes
emotion_classes = pd.Categorical(df['emotion']).categories

# Load pre-trained BERT model for emotion prediction
emotion_prediction_model = AutoModelForSequenceClassification.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion")
emotion_prediction_tokenizer = AutoTokenizer.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion")

# Lazy loading for the fine-tuned language model
_finetuned_lm_tokenizer = None
_finetuned_lm_model = None
def get_finetuned_lm_model():
    global _finetuned_lm_tokenizer, _finetuned_lm_model
    if _finetuned_lm_tokenizer is None or _finetuned_lm_model is None:
        finetuned_lm_model_name = "microsoft/DialoGPT-large"  # Replace with your fine-tuned language model name
        _finetuned_lm_tokenizer = AutoTokenizer.from_pretrained(finetuned_lm_model_name)
        _finetuned_lm_model = AutoModelForCausalLM.from_pretrained(finetuned_lm_model_name, device_map="auto", low_cpu_mem_usage=True)
    return _finetuned_lm_tokenizer, _finetuned_lm_model

# Enhanced Emotional States
emotions = {
    'joy': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
    'pleasure': {'percentage': 10, 'motivation': 'selfish', 'intensity': 0},
    'sadness': {'percentage': 10, 'motivation': 'negative', 'intensity': 0},
    'grief': {'percentage': 10, 'motivation': 'negative', 'intensity': 0},
    'anger': {'percentage': 10, 'motivation': 'traumatic or strong', 'intensity': 0},
    'calmness': {'percentage': 10, 'motivation': 'neutral', 'intensity': 0},
    'determination': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
    'resentment': {'percentage': 10, 'motivation': 'negative', 'intensity': 0},
    'glory': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
    'motivation': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
    'ideal_state': {'percentage': 100, 'motivation': 'balanced', 'intensity': 0},
    'fear': {'percentage': 10, 'motivation': 'defensive', 'intensity': 0},
    'surprise': {'percentage': 10, 'motivation': 'unexpected', 'intensity': 0},
    'anticipation': {'percentage': 10, 'motivation': 'predictive', 'intensity': 0},
    'trust': {'percentage': 10, 'motivation': 'reliable', 'intensity': 0},
    'disgust': {'percentage': 10, 'motivation': 'repulsive', 'intensity': 0},
    'optimism': {'percentage': 10, 'motivation': 'hopeful', 'intensity': 0},
    'pessimism': {'percentage': 10, 'motivation': 'doubtful', 'intensity': 0},
    'boredom': {'percentage': 10, 'motivation': 'indifferent', 'intensity': 0},
    'envy': {'percentage': 10, 'motivation': 'jealous', 'intensity': 0}
}
total_percentage = 200
emotion_history_file = 'emotion_history.json'

def load_historical_data(file_path=emotion_history_file):
    if os.path.exists(file_path):
        with open(file_path, 'r') as file:
            return json.load(file)
    return []

def save_historical_data(historical_data, file_path=emotion_history_file):
    with open(file_path, 'w') as file:
        json.dump(historical_data, file)

emotion_history = load_historical_data()

def update_emotion(emotion, percentage, intensity):
    emotions['ideal_state']['percentage'] -= percentage
    emotions[emotion]['percentage'] += percentage
    emotions[emotion]['intensity'] = intensity

    total_current = sum(e['percentage'] for e in emotions.values())
    adjustment = total_percentage - total_current
    emotions['ideal_state']['percentage'] += adjustment

def normalize_context(context):
    return context.lower().strip()

# Memory-efficient genetic algorithm for emotion evolution
def evolve_emotions():
    def evaluate(individual):
        ideal_state = individual[-1]
        other_emotions = individual[:-1]
        intensities = individual[-21:-1]
        return (abs(ideal_state - 100), 
                sum(other_emotions), 
                max(intensities) - min(intensities))

    creator.create("FitnessMulti", base.Fitness, weights=(-1.0, -1.0, -1.0))
    creator.create("Individual", list, fitness=creator.FitnessMulti)

    toolbox = base.Toolbox()
    toolbox.register("attr_float", random.uniform, 0, 20)
    toolbox.register("attr_intensity", random.uniform, 0, 10)
    toolbox.register("individual", tools.initCycle, creator.Individual,
                     (toolbox.attr_float,) * (len(emotions) - 1) + 
                     (toolbox.attr_intensity,) * len(emotions) +
                     (lambda: 100,), n=1)
    toolbox.register("population", tools.initRepeat, list, toolbox.individual)
    toolbox.register("mate", tools.cxTwoPoint)
    toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=1, indpb=0.2)
    toolbox.register("select", tools.selNSGA2)
    toolbox.register("evaluate", evaluate)

    population = toolbox.population(n=100)
    algorithms.eaMuPlusLambda(population, toolbox, mu=50, lambda_=100, cxpb=0.7, mutpb=0.2, ngen=100, 
                              stats=None, halloffame=None, verbose=False)

    best_individual = tools.selBest(population, k=1)[0]
    emotion_values = best_individual[:len(emotions)-1]
    intensities = best_individual[-21:-1]
    ideal_state = best_individual[-1]

    for i, emotion in enumerate(emotions):
        emotions[emotion]['percentage'] = emotion_values[i]
        emotions[emotion]['intensity'] = intensities[i]

    emotions['ideal_state']['percentage'] = ideal_state

def predict_emotion(context):
    emotion_prediction_pipeline = pipeline('text-classification', model=emotion_prediction_model, tokenizer=emotion_prediction_tokenizer, top_k=None)
    predictions = emotion_prediction_pipeline(context)
    emotion_scores = predictions[0]
    emotion_pred = emotion_classes[np.argmax(emotion_scores)]
    return emotion_pred

def generate_text(prompt, max_length=100, emotion=None):
    finetuned_lm_tokenizer, finetuned_lm_model = get_finetuned_lm_model()
    input_ids = finetuned_lm_tokenizer.encode(prompt, return_tensors='pt').to(finetuned_lm_model.device)

    if emotion is not None:
        emotion_intensity = emotions[emotion]['intensity']
        top_p = 0.95 - (emotion_intensity / 10)  # Adjust top_p based on emotion intensity
        temperature = 0.7 + (emotion_intensity / 5)  # Adjust temperature based on emotion intensity
    else:
        top_p = 0.95
        temperature = 0.7

    with torch.no_grad():
        output = finetuned_lm_model.generate(
            input_ids,
            max_length=max_length,
            num_return_sequences=1,
            no_repeat_ngram_size=2,
            do_sample=True,
            top_k=50,
            top_p=top_p,
            temperature=temperature
        )
    generated_text = finetuned_lm_tokenizer.decode(output[0], skip_special_tokens=True)
    return generated_text

def generate_response(context, emotion=None):
    prompt = context
    generated_text = generate_text(prompt, emotion=emotion)
    return generated_text

with gr.Blocks() as demo:
    gr.Markdown("# Emotion-Aware Language Model")
    
    context_input = gr.Textbox(label="Enter a context")
    predict_btn = gr.Button("Predict Emotion and Generate Text")
    
    with gr.Row():
        emotion_output = gr.Textbox(label="Predicted Emotion", show_label=True)
        generated_text_output = gr.Textbox(label="Generated Text", show_label=True)
    
    predict_btn.click(fn=lambda context: (predict_emotion(context), generate_response(context, emotion=predict_emotion(context))), inputs=context_input, outputs=[emotion_output, generated_text_output])

demo.launch(share=True)