depth / metric_depth /README.md
LiheYoung's picture
Add Github repository content
2680cbd verified
|
raw
history blame
2.16 kB

Depth Anything V2 for Metric Depth Estimation

teaser

We here provide a simple codebase to fine-tune our Depth Anything V2 pre-trained encoder for metric depth estimation. Built on our powerful encoder, we use a simple DPT head to regress the depth. We fine-tune our pre-trained encoder on synthetic Hypersim / Virtual KITTI datasets for indoor / outdoor metric depth estimation, respectively.

Usage

Inference

Please first download our pre-trained metric depth models and put them under the checkpoints directory:

# indoor scenes
python run.py \
  --encoder vitl --load-from checkpoints/depth_anything_v2_metric_hypersim_vitl.pth \
  --max-depth 20 --img-path <path> --outdir <outdir> [--input-size <size>] [--save-numpy]

# outdoor scenes
python run.py \
  --encoder vitl --load-from checkpoints/depth_anything_v2_metric_vkitti_vitl.pth \
  --max-depth 80 --img-path <path> --outdir <outdir> [--input-size <size>] [--save-numpy]

You can also project 2D images to point clouds:

python depth_to_pointcloud.py \
  --encoder vitl --load-from checkpoints/depth_anything_v2_metric_hypersim_vitl.pth \
  --max-depth 20 --img-path <path> --outdir <outdir>

Reproduce training

Please first prepare the Hypersim and Virtual KITTI 2 datasets. Then:

bash dist_train.sh

Citation

If you find this project useful, please consider citing:

@article{depth_anything_v2,
  title={Depth Anything V2},
  author={Yang, Lihe and Kang, Bingyi and Huang, Zilong and Zhao, Zhen and Xu, Xiaogang and Feng, Jiashi and Zhao, Hengshuang},
  journal={arXiv:2406.09414},
  year={2024}
}