|
# Depth Anything V2 for Metric Depth Estimation |
|
|
|
![teaser](./assets/compare_zoedepth.png) |
|
|
|
We here provide a simple codebase to fine-tune our Depth Anything V2 pre-trained encoder for metric depth estimation. Built on our powerful encoder, we use a simple DPT head to regress the depth. We fine-tune our pre-trained encoder on synthetic Hypersim / Virtual KITTI datasets for indoor / outdoor metric depth estimation, respectively. |
|
|
|
|
|
## Usage |
|
|
|
### Inference |
|
|
|
Please first download our pre-trained metric depth models and put them under the `checkpoints` directory: |
|
- [Indoor model from Hypersim](https://huggingface.co/depth-anything/Depth-Anything-V2-Metric-Hypersim-Large/resolve/main/depth_anything_v2_metric_hypersim_vitl.pth?download=true) |
|
- [Outdoor model from Virtual KITTI 2](https://huggingface.co/depth-anything/Depth-Anything-V2-Metric-VKITTI-Large/resolve/main/depth_anything_v2_metric_vkitti_vitl.pth?download=true) |
|
|
|
```bash |
|
# indoor scenes |
|
python run.py \ |
|
--encoder vitl --load-from checkpoints/depth_anything_v2_metric_hypersim_vitl.pth \ |
|
--max-depth 20 --img-path <path> --outdir <outdir> [--input-size <size>] [--save-numpy] |
|
|
|
# outdoor scenes |
|
python run.py \ |
|
--encoder vitl --load-from checkpoints/depth_anything_v2_metric_vkitti_vitl.pth \ |
|
--max-depth 80 --img-path <path> --outdir <outdir> [--input-size <size>] [--save-numpy] |
|
``` |
|
|
|
You can also project 2D images to point clouds: |
|
```bash |
|
python depth_to_pointcloud.py \ |
|
--encoder vitl --load-from checkpoints/depth_anything_v2_metric_hypersim_vitl.pth \ |
|
--max-depth 20 --img-path <path> --outdir <outdir> |
|
``` |
|
|
|
### Reproduce training |
|
|
|
Please first prepare the [Hypersim](https://github.com/apple/ml-hypersim) and [Virtual KITTI 2](https://europe.naverlabs.com/research/computer-vision/proxy-virtual-worlds-vkitti-2/) datasets. Then: |
|
|
|
```bash |
|
bash dist_train.sh |
|
``` |
|
|
|
|
|
## Citation |
|
|
|
If you find this project useful, please consider citing: |
|
|
|
```bibtex |
|
@article{depth_anything_v2, |
|
title={Depth Anything V2}, |
|
author={Yang, Lihe and Kang, Bingyi and Huang, Zilong and Zhao, Zhen and Xu, Xiaogang and Feng, Jiashi and Zhao, Hengshuang}, |
|
journal={arXiv:2406.09414}, |
|
year={2024} |
|
} |
|
``` |
|
|