File size: 14,125 Bytes
80585bc aabfb0a 80585bc aabfb0a 80585bc aabfb0a 80585bc aabfb0a 80585bc aabfb0a 80585bc aabfb0a d6c46d4 aabfb0a e7c0374 249fb68 e7c0374 249fb68 aabfb0a 249fb68 aabfb0a 249fb68 aabfb0a 0bc09c2 aabfb0a 0bc09c2 aabfb0a 0bc09c2 aabfb0a ed38ea6 aabfb0a 80585bc aabfb0a 80585bc aabfb0a 80585bc aabfb0a 80585bc aabfb0a 80585bc aabfb0a 80585bc aabfb0a 80585bc aabfb0a 80585bc aabfb0a 80585bc aabfb0a 80585bc aabfb0a 80585bc aabfb0a 0bc09c2 aabfb0a 0bc09c2 aabfb0a 80585bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 |
import streamlit as st
import os
from groq import Groq
from transformers import ViTForImageClassification, ViTImageProcessor
from sentence_transformers import SentenceTransformer
from PIL import Image
import torch
import numpy as np
from typing import List, Dict, Tuple, Optional, Any
import faiss
import json
import torchvision.transforms.functional as TF
from torchvision import transforms
import cv2
import pandas as pd
from datetime import datetime
import logging
# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class ConfigManager:
"""Manages configuration settings for the application"""
DEFAULT_CONFIG = {
"model_settings": {
"vit_model": "google/vit-base-patch16-224",
"sentence_transformer": "all-MiniLM-L6-v2",
"groq_model": "llama-3.3-70b-versatile"
},
"analysis_settings": {
"confidence_threshold": 0.5,
"max_defects": 3,
"heatmap_intensity": 0.7
},
"rag_settings": {
"num_relevant_docs": 3,
"similarity_threshold": 0.75
}
}
@staticmethod
def load_config():
"""Load configuration with fallback to defaults"""
try:
if os.path.exists('config.json'):
with open('config.json', 'r') as f:
config = json.load(f)
return {**ConfigManager.DEFAULT_CONFIG, **config}
except Exception as e:
logger.warning(f"Error loading config: {e}")
return ConfigManager.DEFAULT_CONFIG
config = ConfigManager.load_config()
class ImageAnalyzer:
def __init__(self):
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.config = config["model_settings"]
self.analysis_config = config["analysis_settings"]
self.defect_classes = [
"spalling", "reinforcement_corrosion", "structural_cracks",
"water_damage", "surface_deterioration", "alkali_silica_reaction",
"concrete_delamination", "honeycomb", "scaling",
"efflorescence", "joint_deterioration", "carbonation"
]
self.initialize_models()
self.history = []
def initialize_models(self):
"""Initialize all required models"""
try:
# Initialize ViT model
self.model = ViTForImageClassification.from_pretrained(
self.config["vit_model"],
num_labels=len(self.defect_classes),
ignore_mismatched_sizes=True
).to(self.device)
# Initialize image processor
self.processor = ViTImageProcessor.from_pretrained(self.config["vit_model"])
# Initialize transformations pipeline
self.transforms = self._setup_transforms()
return True
except Exception as e:
logger.error(f"Model initialization error: {e}")
return False
def _setup_transforms(self):
"""Setup image transformation pipeline"""
return transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
transforms.RandomAdjustSharpness(2),
transforms.ColorJitter(brightness=0.2, contrast=0.2)
])
def preprocess_image(self, image: Image.Image) -> Dict[str, Any]:
"""Enhanced image preprocessing with multiple analyses"""
try:
# Convert to RGB if necessary
if image.mode != 'RGB':
image = image.convert('RGB')
# Basic image statistics
img_array = np.array(image)
stats = {
"mean_brightness": np.mean(img_array),
"std_brightness": np.std(img_array),
"size": image.size,
"aspect_ratio": image.size[0] / image.size[1]
}
# Edge detection for crack analysis
gray = cv2.cvtColor(img_array, cv2.COLOR_RGB2GRAY)
edges = cv2.Canny(gray, 100, 200)
stats["edge_density"] = np.mean(edges > 0)
# Color analysis for rust detection
hsv = cv2.cvtColor(img_array, cv2.COLOR_RGB2HSV)
rust_mask = cv2.inRange(hsv, np.array([0, 50, 50]), np.array([30, 255, 255]))
stats["rust_percentage"] = np.mean(rust_mask > 0)
# Transform for model
model_input = self.transforms(image).unsqueeze(0).to(self.device)
return {
"model_input": model_input,
"stats": stats,
"edges": edges,
"rust_mask": rust_mask
}
except Exception as e:
logger.error(f"Preprocessing error: {e}")
return None
def detect_defects(self, image: Image.Image) -> Dict[str, Any]:
"""Enhanced defect detection with multiple analysis methods"""
try:
# Preprocess image
proc_data = self.preprocess_image(image)
if proc_data is None:
logger.error("Image preprocessing failed.")
return None # Early return if preprocessing failed
# Model prediction
with torch.no_grad():
outputs = self.model(proc_data["model_input"])
# Get probabilities
probabilities = torch.nn.functional.softmax(outputs.logits, dim=1)
# Convert to dictionary
defect_probs = {
self.defect_classes[i]: float(probabilities[0][i])
for i in range(len(self.defect_classes))
}
# Generate attention heatmap
attention_weights = outputs.attentions[-1].mean(dim=1)[0] if hasattr(outputs, 'attentions') else None
heatmap = self.generate_heatmap(attention_weights, image.size) if attention_weights is not None else None
# Additional analysis based on image statistics
additional_analysis = self.analyze_image_statistics(proc_data["stats"])
# Combine all results
result = {
"defect_probabilities": defect_probs,
"heatmap": heatmap,
"image_statistics": proc_data["stats"],
"additional_analysis": additional_analysis,
"edge_detection": proc_data["edges"],
"rust_detection": proc_data["rust_mask"],
"timestamp": datetime.now().isoformat()
}
# Save to history
self.history.append(result)
return result
except Exception as e:
logger.error(f"Defect detection error: {e}")
return None
def analyze_image_statistics(self, stats: Dict) -> Dict[str, Any]:
"""Analyze image statistics for additional insights"""
analysis = {}
# Brightness analysis
if stats["mean_brightness"] < 50:
analysis["lighting_condition"] = "Poor lighting - may affect accuracy"
elif stats["mean_brightness"] > 200:
analysis["lighting_condition"] = "Overexposed - may affect accuracy"
# Edge density analysis
if stats["edge_density"] > 0.1:
analysis["crack_likelihood"] = "High crack probability based on edge detection"
# Rust analysis
if stats["rust_percentage"] > 0.05:
analysis["corrosion_indicator"] = "Possible corrosion detected"
return analysis
def generate_heatmap(self, attention_weights: torch.Tensor, image_size: Tuple[int, int]) -> np.ndarray:
"""Generate enhanced attention heatmap"""
try:
if attention_weights is None:
return None
# Process attention weights
heatmap = attention_weights.cpu().numpy()
heatmap = cv2.resize(heatmap, image_size)
# Enhanced normalization
heatmap = np.maximum(heatmap, 0)
heatmap = (heatmap - heatmap.min()) / (heatmap.max() - heatmap.min() + 1e-8)
# Apply gamma correction
gamma = self.analysis_config["heatmap_intensity"]
heatmap = np.power(heatmap, gamma)
# Apply colormap
heatmap = (heatmap * 255).astype(np.uint8)
heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)
return heatmap
except Exception as e:
logger.error(f"Heatmap generation error: {e}")
return None
class RAGSystem:
"""Basic RAG System for storing and retrieving documents."""
def __init__(self):
self.embedding_model = SentenceTransformer(config["model_settings"]["sentence_transformer"])
self.vector_store = faiss.IndexFlatL2(384) # 384-dim for MiniLM embeddings
self.knowledge_base = []
def add_documents(self, docs: List[str]):
"""Add documents to the vector store."""
embeddings = self.embedding_model.encode(docs)
self.vector_store.add(np.array(embeddings).astype('float32'))
for doc in docs:
self.knowledge_base.append({"text": doc})
def search(self, query: str, k: int = 3):
"""Retrieve similar documents for the query."""
query_embedding = self.embedding_model.encode([query])
D, I = self.vector_store.search(np.array(query_embedding).astype('float32'), k)
return [self.knowledge_base[i]["text"] for i in I[0]]
class EnhancedRAGSystem(RAGSystem):
"""Enhanced RAG system with additional features"""
def __init__(self):
super().__init__()
self.config = config["rag_settings"]
self.query_history = []
def get_relevant_context(self, query: str, k: int = None) -> str:
"""Enhanced context retrieval with debugging info"""
if k is None:
k = self.config["num_relevant_docs"]
# Log query
self.query_history.append({
"timestamp": datetime.now().isoformat(),
"query": query
})
# Generate query embedding
query_embedding = self.embedding_model.encode([query])
# Search for similar documents
D, I = self.vector_store.search(np.array(query_embedding).astype('float32'), k)
# Filter by similarity threshold
relevant_docs = [
self.knowledge_base[i]["text"]
for i, dist in zip(I[0], D[0])
if dist < self.config["similarity_threshold"]
]
return "\n\n".join(relevant_docs)
def main():
st.set_page_config(
page_title="Enhanced Construction Defect Analyzer",
page_icon="🏗️",
layout="wide"
)
st.title("🏗️ Advanced Construction Defect Analysis System")
# Initialize systems
if 'rag_system' not in st.session_state:
st.session_state.rag_system = EnhancedRAGSystem()
if 'image_analyzer' not in st.session_state:
st.session_state.image_analyzer = ImageAnalyzer()
# Sidebar for settings and history
with st.sidebar:
st.header("Settings & History")
show_debug = st.checkbox("Show Debug Information")
confidence_threshold = st.slider(
"Confidence Threshold",
min_value=0.0,
max_value=1.0,
value=config["analysis_settings"]["confidence_threshold"]
)
if st.button("View Analysis History"):
st.write("Recent Analyses:", st.session_state.image_analyzer.history[-5:])
# Main interface
col1, col2 = st.columns([2, 3])
with col1:
uploaded_file = st.file_uploader(
"Upload a construction image",
type=['jpg', 'jpeg', 'png']
)
user_query = st.text_input(
"Ask a question about construction defects:",
help="Enter your question about specific defects or general construction issues"
)
with col2:
if uploaded_file:
image = Image.open(uploaded_file)
# Create tabs for different views
tabs = st.tabs(["Original", "Analysis", "Details"])
with tabs[0]:
st.image(image, caption="Uploaded Image")
with tabs[1]:
with st.spinner("Analyzing image..."):
results = st.session_state.image_analyzer.detect_defects(image)
if results:
# Show defect probabilities
defect_probs = results["defect_probabilities"]
significant_defects = {
k: v for k, v in defect_probs.items()
if v > confidence_threshold
}
if significant_defects:
st.subheader("Detected Defects")
fig = plt.figure(figsize=(10, 6))
plt.barh(list(significant_defects.keys()),
list(significant_defects.values()))
st.pyplot(fig)
# Show heatmap
if results["heatmap"] is not None:
st.image(results["heatmap"], caption="Defect Attention Map")
with tabs[2]:
if results:
st.json(results["additional_analysis"])
if show_debug:
st.json(results["image_statistics"])
if user_query:
with st.spinner("Processing query..."):
context = st.session_state.rag_system.get_relevant_context(user_query)
response = get_groq_response(user_query, context)
st.subheader("AI Assistant Response")
st.write(response)
if show_debug:
st.subheader("Retrieved Context")
st.text(context)
if __name__ == "__main__":
main() |