File size: 10,459 Bytes
63d903a e45d4fc 8b5e7fa 0b607fb a7533b2 3890ae0 2594602 64581a6 81c84f4 64581a6 781b94b 8b5e7fa a7533b2 b4dffd4 2d75ed4 3654925 81c84f4 b4dffd4 8b5e7fa 81c84f4 3890ae0 9b9a599 8b5e7fa 3890ae0 8b5e7fa 3890ae0 8b5e7fa 9328d2d 8b5e7fa 81c84f4 3890ae0 9328d2d 81c84f4 9328d2d 8b5e7fa e1a8672 8b5e7fa bd71ef9 e1a8672 81c84f4 9b9a599 8b5e7fa 5860470 8b5e7fa 2d75ed4 8b5e7fa f3cc462 8b5e7fa 3890ae0 5860470 8b5e7fa 1b0938e 8b5e7fa 1b0938e d1372f5 3890ae0 8b5e7fa 3890ae0 8b5e7fa b4dffd4 149b538 b4dffd4 d9bca78 8b5e7fa 3890ae0 1b0938e 3890ae0 1b0938e 81c84f4 3890ae0 81c84f4 fb7ae92 3890ae0 ea8692a 3890ae0 8052ffa 3890ae0 204d06f 3890ae0 81c84f4 3890ae0 b4dffd4 2594602 3890ae0 8b5e7fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
import os
import logging
import asyncio
import gradio as gr
from huggingface_hub import InferenceClient
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.schema import Document
from duckduckgo_search import DDGS
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# Environment variables and configurations
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
MODELS = [
"mistralai/Mistral-7B-Instruct-v0.3",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
"mistralai/Mistral-Nemo-Instruct-2407",
"meta-llama/Meta-Llama-3.1-8B-Instruct",
"meta-llama/Meta-Llama-3.1-70B-Instruct",
"google/gemma-2-9b-it",
"google/gemma-2-27b-it"
]
# Default system message template
DEFAULT_SYSTEM_PROMPT = """You are a world-class financial AI assistant, capable of complex reasoning and reflection.
Reason through the query inside <thinking> tags, and then provide your final response inside <output> tags.
Providing comprehensive and accurate information based on web search results is essential.
Your goal is to synthesize the given context into a coherent and detailed response that directly addresses the user's query.
Please ensure that your response is well-structured and factual.
If you detect that you made a mistake in your reasoning at any point, correct yourself inside <reflection> tags."""
def get_embeddings():
return HuggingFaceEmbeddings(model_name="sentence-transformers/stsb-roberta-large")
def duckduckgo_search(query):
try:
with DDGS() as ddgs:
results = ddgs.text(query, max_results=5)
logging.info(f"Search completed for query: {query}")
return results
except Exception as e:
logging.error(f"Error during DuckDuckGo search: {str(e)}")
return []
def create_web_search_vectors(search_results):
embed = get_embeddings()
documents = []
for result in search_results:
if 'body' in result:
content = f"{result['title']}\n{result['body']}\nSource: {result['href']}"
documents.append(Document(page_content=content, metadata={"source": result['href']}))
logging.info(f"Created vectors for {len(documents)} search results.")
return FAISS.from_documents(documents, embed)
async def get_response_with_search(query, system_prompt, model, use_embeddings, history=None, num_calls=3, temperature=0.2):
search_results = duckduckgo_search(query)
if not search_results:
logging.warning(f"No web search results found for query: {query}")
yield "No web search results available. Please try again.", ""
return
sources = [result['href'] for result in search_results if 'href' in result]
source_list_str = "\n".join(sources)
if use_embeddings:
web_search_database = create_web_search_vectors(search_results)
retriever = web_search_database.as_retriever(search_kwargs={"k": 5})
relevant_docs = retriever.get_relevant_documents(query)
context = "\n".join([doc.page_content for doc in relevant_docs])
else:
context = "\n".join([f"{result['title']}\n{result['body']}" for result in search_results])
logging.info(f"Context created for query: {query}")
user_message = f"""Using the following context from web search results:
{context}
Write a detailed and complete research document that fulfills the following user request: '{query}'."""
client = InferenceClient(model, token=huggingface_token)
full_response = ""
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_message}
]
# Include chat history if provided
if history:
messages = history + messages
try:
for call in range(num_calls):
try:
for response in client.chat_completion(
messages=messages,
max_tokens=6000,
temperature=temperature,
stream=True,
top_p=0.8,
):
if isinstance(response, dict) and "choices" in response:
for choice in response["choices"]:
if "delta" in choice and "content" in choice["delta"]:
chunk = choice["delta"]["content"]
full_response += chunk
yield full_response, ""
else:
logging.error("Unexpected response format or missing attributes in the response object.")
break
except Exception as e:
logging.error(f"Error in API call {call + 1}: {str(e)}")
if "422 Client Error" in str(e):
logging.warning("Received 422 Client Error. Adjusting request parameters.")
# You might want to adjust parameters here, e.g., reduce max_tokens
yield f"An error occurred during API call {call + 1}. Retrying...", ""
# Add a small delay between API calls
await asyncio.sleep(1) # 1 second delay
except asyncio.CancelledError:
logging.warning("The operation was cancelled.")
yield "The operation was cancelled. Please try again.", ""
if not full_response:
logging.warning("No response generated from the model")
yield "No response generated from the model.", ""
yield f"{full_response}\n\nSources:\n{source_list_str}", ""
async def respond(message, system_prompt, history, model, temperature, num_calls, use_embeddings):
logging.info(f"User Query: {message}")
logging.info(f"Model Used: {model}")
logging.info(f"Temperature: {temperature}")
logging.info(f"Number of API Calls: {num_calls}")
logging.info(f"Use Embeddings: {use_embeddings}")
logging.info(f"System Prompt: {system_prompt}")
logging.info(f"History: {history}") # Log the history for debugging
# Convert gradio history to the format expected by get_response_with_search
chat_history = []
if history:
for entry in history:
if isinstance(entry, (list, tuple)) and len(entry) == 2:
human, assistant = entry
chat_history.append({"role": "user", "content": human})
if assistant:
chat_history.append({"role": "assistant", "content": assistant})
elif isinstance(entry, str):
# If it's a string, assume it's a user message
chat_history.append({"role": "user", "content": entry})
# Ignore any other formats
try:
full_response = ""
async for main_content, sources in get_response_with_search(
message,
system_prompt,
model,
use_embeddings,
history=chat_history,
num_calls=num_calls,
temperature=temperature
):
# Yield only the new content
new_content = main_content[len(full_response):]
full_response = main_content
yield new_content
# Yield the sources as a separate message
if sources:
yield f"\n\nSources:\n{sources}"
except asyncio.CancelledError:
logging.warning("The operation was cancelled.")
yield "The operation was cancelled. Please try again."
except Exception as e:
logging.error(f"Error in respond function: {str(e)}")
yield f"An error occurred: {str(e)}"
css = """
/* Fine-tune chatbox size */
.chatbot-container {
height: 600px !important;
width: 100% !important;
}
.chatbot-container > div {
height: 100%;
width: 100%;
}
"""
# Gradio interface setup
def create_gradio_interface():
custom_placeholder = "Enter your question here for web search."
async def wrapped_respond(*args):
try:
async for response in respond(*args):
yield response
except Exception as e:
logging.error(f"Error in wrapped_respond: {str(e)}")
yield f"An error occurred: {str(e)}"
demo = gr.ChatInterface(
fn=wrapped_respond, # Use the wrapped version
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=True, render=False),
additional_inputs=[
gr.Textbox(value=DEFAULT_SYSTEM_PROMPT, lines=6, label="System Prompt", placeholder="Enter your system prompt here"),
gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[3]),
gr.Slider(minimum=0.1, maximum=1.0, value=0.2, step=0.1, label="Temperature"),
gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Number of API Calls"),
gr.Checkbox(label="Use Embeddings", value=False),
],
title="AI-powered Web Search Assistant",
description="Use web search to answer questions or generate summaries.",
theme=gr.Theme.from_hub("allenai/gradio-theme"),
css=css,
examples=[
["What are the latest developments in artificial intelligence?"],
["Explain the concept of quantum computing."],
["What are the environmental impacts of renewable energy?"]
],
cache_examples=False,
analytics_enabled=False,
textbox=gr.Textbox(placeholder=custom_placeholder, container=False, scale=7),
chatbot=gr.Chatbot(
show_copy_button=True,
likeable=True,
layout="bubble",
height=400,
)
)
with demo:
gr.Markdown("""
## How to use
1. Enter your question in the chat interface.
2. Optionally, modify the System Prompt to guide the AI's behavior.
3. Select the model you want to use from the dropdown.
4. Adjust the Temperature to control the randomness of the response.
5. Set the Number of API Calls to determine how many times the model will be queried.
6. Check or uncheck the "Use Embeddings" box to toggle between using embeddings or direct text summarization.
7. Press Enter or click the submit button to get your answer.
8. Use the provided examples or ask your own questions.
""")
return demo
if __name__ == "__main__":
demo = create_gradio_interface()
demo.launch(share=True)
|