File size: 10,430 Bytes
63d903a e45d4fc 2d75ed4 0b607fb a7533b2 3890ae0 2594602 64581a6 781b94b 28ed44f 64581a6 a7533b2 b4dffd4 2d75ed4 3654925 2d75ed4 b4dffd4 64581a6 b4dffd4 3890ae0 64581a6 3890ae0 9b9a599 3890ae0 64581a6 5857237 24a7323 8052ffa 24a7323 8052ffa 24a7323 8052ffa 24a7323 8052ffa 24a7323 8052ffa 3890ae0 64581a6 3890ae0 64581a6 3890ae0 8052ffa 64581a6 3890ae0 9328d2d 64581a6 3890ae0 9328d2d 64581a6 9328d2d 64581a6 9328d2d 8052ffa 647c306 fb7ae92 8052ffa e1a8672 8052ffa bd71ef9 e1a8672 bd71ef9 9b9a599 d9bca78 5860470 2d75ed4 5860470 64581a6 5860470 e1a8672 a20790a 2d75ed4 5860470 3fd1094 5860470 2d75ed4 3890ae0 5860470 64581a6 5860470 2d75ed4 a6abb8f 3890ae0 9328d2d d1372f5 3890ae0 8052ffa 2ded2ed 8052ffa 2ded2ed 8052ffa 3890ae0 2d75ed4 64581a6 2d75ed4 3890ae0 b4dffd4 149b538 b4dffd4 d9bca78 3890ae0 64581a6 3890ae0 fb7ae92 3890ae0 ea8692a 3890ae0 8052ffa 3890ae0 204d06f 3890ae0 9328d2d 3890ae0 64581a6 3890ae0 b4dffd4 2594602 64581a6 3890ae0 f9f0a5c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
import os
import logging
import asyncio
import gradio as gr
from huggingface_hub import InferenceClient
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.schema import Document
from duckduckgo_search import DDGS
# Configure logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
# Environment variables and configurations
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
logging.info("Environment variable for HuggingFace token retrieved.")
MODELS = [
"mistralai/Mistral-7B-Instruct-v0.3",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
"mistralai/Mistral-Nemo-Instruct-2407",
"meta-llama/Meta-Llama-3.1-8B-Instruct",
"meta-llama/Meta-Llama-3.1-70B-Instruct"
]
logging.info(f"Models list initialized with {len(MODELS)} models.")
def get_embeddings():
logging.info("Loading HuggingFace embeddings model.")
return HuggingFaceEmbeddings(model_name="sentence-transformers/stsb-roberta-large")
def duckduckgo_search(query):
logging.info(f"Initiating DuckDuckGo search for query: {query}")
try:
with DDGS() as ddgs:
results = ddgs.text(query, max_results=10)
logging.info(f"Search completed, found {len(results)} results.")
return results
except Exception as e:
logging.error(f"Error during DuckDuckGo search: {str(e)}")
return []
async def rephrase_query(query, context, model):
# Log the original query for debugging
logging.info(f"Original query: {query}")
prompt = f"""You are a highly intelligent conversational chatbot. Your task is to analyze the given context and new query, then decide whether to rephrase the query with or without incorporating the context. Follow these steps:
1. Determine if the new query is a continuation of the previous conversation or an entirely new topic.
2. If it's a continuation, rephrase the query by incorporating relevant information from the context to make it more specific and contextual.
3. If it's a new topic, rephrase the query to make it more appropriate for a web search, focusing on clarity and accuracy without using the previous context.
4. Provide ONLY the rephrased query without any additional explanation or reasoning.
Context: {context}
New query: {query}
Rephrased query:"""
client = InferenceClient(model, token=huggingface_token)
try:
response = await asyncio.to_thread(
client.text_generation,
prompt=prompt,
max_new_tokens=100,
temperature=0.2,
)
# The response should be the rephrased query as per your prompt
rephrased_query = response.strip()
# Log the rephrased query
logging.info(f"Rephrased query: {rephrased_query}")
return rephrased_query
except Exception as e:
logging.error(f"Error in rephrase_query: {str(e)}")
return query # Fallback to the original query if there's an error
def create_web_search_vectors(search_results):
logging.info(f"Creating web search vectors from {len(search_results)} search results.")
embed = get_embeddings()
documents = []
for result in search_results:
if 'body' in result:
content = f"{result['title']}\n{result['body']}\nSource: {result['href']}"
documents.append(Document(page_content=content, metadata={"source": result['href']}))
logging.info(f"{len(documents)} documents created for FAISS vectorization.")
return FAISS.from_documents(documents, embed)
async def get_response_with_search(query, model, use_embeddings, num_calls=3, temperature=0.2):
logging.info(f"Performing web search for query: {query}")
search_results = duckduckgo_search(query)
if not search_results:
logging.warning("No web search results found.")
yield "No web search results available. Please try again.", ""
return
if use_embeddings:
logging.info("Using embeddings to retrieve relevant documents.")
web_search_database = create_web_search_vectors(search_results)
retriever = web_search_database.as_retriever(search_kwargs={"k": 5})
relevant_docs = retriever.get_relevant_documents(query)
context = "\n".join([doc.page_content for doc in relevant_docs])
else:
logging.info("Using raw search results for context.")
context = "\n".join([f"{result['title']}\n{result['body']}\nSource: {result['href']}" for result in search_results])
system_message = """ You are a world-class AI system, capable of complex reasoning and reflection.
Reason through the query inside <thinking> tags, and then provide your final response inside <output> tags.
Providing comprehensive and accurate information based on web search results is essential.
Your goal is to synthesize the given context into a coherent and detailed response that directly addresses the user's query.
Please ensure that your response is well-structured, factual, and cites sources where appropriate.
If you detect that you made a mistake in your reasoning at any point, correct yourself inside <reflection> tags."""
user_message = f"""Using the following context from web search results:
{context}
Write a detailed and complete research document that fulfills the following user request: '{query}'
After writing the document, please provide a list of sources used in your response."""
client = InferenceClient(model, token=huggingface_token)
full_response = ""
try:
for _ in range(num_calls):
logging.info(f"Sending request to model with {num_calls} API calls and temperature {temperature}.")
for response in client.chat_completion(
messages=[
{"role": "system", "content": system_message},
{"role": "user", "content": user_message}
],
max_tokens=6000,
temperature=temperature,
stream=True,
top_p=0.8,
):
if isinstance(response, dict) and "choices" in response:
for choice in response["choices"]:
if "delta" in choice and "content" in choice["delta"]:
chunk = choice["delta"]["content"]
full_response += chunk
yield full_response, ""
else:
logging.error("Unexpected response format or missing attributes in the response object.")
break
except Exception as e:
logging.error(f"Error in get_response_with_search: {str(e)}")
yield f"An error occurred while processing your request: {str(e)}", ""
if not full_response:
logging.warning("No response generated from the model.")
yield "No response generated from the model.", ""
async def respond(message, history, model, temperature, num_calls, use_embeddings):
logging.info(f"User Query: {message}")
logging.info(f"Model Used: {model}")
logging.info(f"Temperature: {temperature}")
logging.info(f"Number of API Calls: {num_calls}")
logging.info(f"Use Embeddings: {use_embeddings}")
try:
# Rephrase the query
rephrased_query = await rephrase_query(message, history, model)
yield f"Rephrased Query: {rephrased_query}\n\nSearching the web...\n\n"
async for main_content, sources in get_response_with_search(rephrased_query, model, use_embeddings, num_calls=num_calls, temperature=temperature):
response = f"{main_content}\n\n{sources}"
yield response
except asyncio.CancelledError:
logging.warning("Operation cancelled by user.")
yield "The operation was cancelled. Please try again."
except Exception as e:
logging.error(f"Error in respond function: {str(e)}")
yield f"An error occurred: {str(e)}"
css = """
/* Fine-tune chatbox size */
.chatbot-container {
height: 600px !important;
width: 100% !important;
}
.chatbot-container > div {
height: 100%;
width: 100%;
}
"""
# Gradio interface setup
def create_gradio_interface():
logging.info("Setting up Gradio interface.")
custom_placeholder = "Enter your question here for web search."
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[3]),
gr.Slider(minimum=0.1, maximum=1.0, value=0.2, step=0.1, label="Temperature"),
gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Number of API Calls"),
gr.Checkbox(label="Use Embeddings", value=False),
],
title="AI-powered Web Search Assistant",
description="Use web search to answer questions or generate summaries.",
theme=gr.Theme.from_hub("allenai/gradio-theme"),
css=css,
examples=[
["What are the latest developments in artificial intelligence?"],
["Explain the concept of quantum computing."],
["What are the environmental impacts of renewable energy?"]
],
cache_examples=False,
analytics_enabled=False,
textbox=gr.Textbox(placeholder=custom_placeholder, container=False, scale=7),
chatbot=gr.Chatbot(
show_copy_button=True,
likeable=True,
layout="bubble",
height=400,
)
)
with demo:
gr.Markdown("""
## How to use
1. Enter your question in the chat interface.
2. Select the model you want to use from the dropdown.
3. Adjust the Temperature to control the randomness of the response.
4. Set the Number of API Calls to determine how many times the model will be queried.
5. Check or uncheck the "Use Embeddings" box to toggle between using embeddings or direct text summarization.
6. Press Enter or click the submit button to get your answer.
7. Use the provided examples or ask your own questions.
""")
logging.info("Gradio interface ready.")
return demo
if __name__ == "__main__":
logging.info("Launching Gradio application.")
demo = create_gradio_interface()
demo.launch(share=True) |