File size: 7,884 Bytes
63d903a e977112 0b607fb e977112 3890ae0 e977112 2594602 e977112 81c84f4 64581a6 e977112 a7533b2 b4dffd4 4591c38 06bfedc 4591c38 b4dffd4 84ed5b1 3890ae0 9b9a599 8b5e7fa e977112 8b5e7fa e977112 8b5e7fa e977112 8b5e7fa 3890ae0 e977112 8b5e7fa e977112 3890ae0 e977112 8b5e7fa e977112 9328d2d e977112 8b5e7fa e977112 bd71ef9 e977112 e1a8672 593de4e e977112 84ed5b1 593de4e 84ed5b1 593de4e bd4b7f4 593de4e 8b5e7fa e977112 b4dffd4 149b538 b4dffd4 d9bca78 e977112 3890ae0 e977112 593de4e e977112 204d06f e977112 b4dffd4 2594602 480bd35 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
import os
import json
import re
import gradio as gr
import requests
from duckduckgo_search import DDGS
from typing import List
from pydantic import BaseModel, Field
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_core.documents import Document
from huggingface_hub import InferenceClient
import logging
# Set up basic configuration for logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# Environment variables and configurations
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
MODELS = [
"mistralai/Mistral-7B-Instruct-v0.3",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
"mistralai/Mistral-Nemo-Instruct-2407",
"meta-llama/Meta-Llama-3.1-8B-Instruct",
"meta-llama/Meta-Llama-3.1-70B-Instruct",
"meta-llama/Meta-Llama-3.1-8B-Instruct",
"meta-llama/Meta-Llama-3.1-70B-Instruct"
]
MODEL_TOKEN_LIMITS = {
"mistralai/Mistral-7B-Instruct-v0.3": 32768,
"mistralai/Mixtral-8x7B-Instruct-v0.1": 32768,
"mistralai/Mistral-Nemo-Instruct-2407": 32768,
"meta-llama/Meta-Llama-3.1-8B-Instruct": 8192,
"meta-llama/Meta-Llama-3.1-70B-Instruct": 8192,
}
def get_embeddings():
return HuggingFaceEmbeddings(model_name="sentence-transformers/stsb-roberta-large")
def duckduckgo_search(query):
with DDGS() as ddgs:
results = ddgs.text(query, max_results=5)
return results
class CitingSources(BaseModel):
sources: List[str] = Field(
...,
description="List of sources to cite. Should be an URL of the source."
)
def chatbot_interface(message, history, model, temperature, num_calls):
if not message.strip():
return "", history
history = history + [(message, "")]
try:
for response in respond(message, history, model, temperature, num_calls):
history[-1] = (message, response)
yield history
except gr.CancelledError:
yield history
except Exception as e:
logging.error(f"Unexpected error in chatbot_interface: {str(e)}")
history[-1] = (message, f"An unexpected error occurred: {str(e)}")
yield history
def retry_last_response(history, model, temperature, num_calls):
if not history:
return history
last_user_msg = history[-1][0]
history = history[:-1] # Remove the last response
return chatbot_interface(last_user_msg, history, model, temperature, num_calls)
def respond(message, history, model, temperature, num_calls):
logging.info(f"User Query: {message}")
logging.info(f"Model Used: {model}")
try:
for main_content, sources in get_response_with_search(message, model, num_calls=num_calls, temperature=temperature):
response = f"{main_content}\n\n{sources}"
first_line = response.split('\n')[0] if response else ''
yield response
except Exception as e:
logging.error(f"Error with {model}: {str(e)}")
yield f"An error occurred with the {model} model: {str(e)}. Please try again or select a different model."
def create_web_search_vectors(search_results):
embed = get_embeddings()
documents = []
for result in search_results:
if 'body' in result:
content = f"{result['title']}\n{result['body']}\nSource: {result['href']}"
documents.append(Document(page_content=content, metadata={"source": result['href']}))
return FAISS.from_documents(documents, embed)
def get_response_with_search(query, model, num_calls=3, temperature=0.2):
search_results = duckduckgo_search(query)
web_search_database = create_web_search_vectors(search_results)
if not web_search_database:
yield "No web search results available. Please try again.", ""
return
retriever = web_search_database.as_retriever(search_kwargs={"k": 5})
relevant_docs = retriever.get_relevant_documents(query)
context = "\n".join([doc.page_content for doc in relevant_docs])
prompt = f"""Using the following context from web search results:
{context}
Write a detailed and complete research document that fulfills the following user request: '{query}'
After writing the document, please provide a list of sources used in your response."""
# Use Hugging Face API
client = InferenceClient(model, token=huggingface_token)
# Calculate input tokens (this is an approximation, you might need a more accurate method)
input_tokens = len(prompt.split())
# Get the token limit for the current model
model_token_limit = MODEL_TOKEN_LIMITS.get(model, 8192) # Default to 8192 if model not found
# Calculate max_new_tokens
max_new_tokens = min(model_token_limit - input_tokens, 4096) # Cap at 4096 to be safe
main_content = ""
for i in range(num_calls):
for message in client.chat_completion(
messages=[{"role": "user", "content": prompt}],
max_new_tokens=max_new_tokens,
temperature=temperature,
stream=False,
):
if message.choices and message.choices[0].delta and message.choices[0].delta.content:
chunk = message.choices[0].delta.content
main_content += chunk
yield main_content, "" # Yield partial main content without sources
def vote(data: gr.LikeData):
if data.liked:
print(f"You upvoted this response: {data.value}")
else:
print(f"You downvoted this response: {data.value}")
css = """
/* Fine-tune chatbox size */
"""
def initial_conversation():
return [
(None, "Welcome! I'm your AI assistant for web search. Here's how you can use me:\n\n"
"1. Ask me any question, and I'll search the web for information.\n"
"2. You can adjust the model, temperature, and number of API calls for fine-tuned responses.\n"
"3. For any queries, feel free to reach out @[email protected] or discord - shreyas094\n\n"
"To get started, ask me a question!")
]
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[2]),
gr.Slider(minimum=0.1, maximum=1.0, value=0.2, step=0.1, label="Temperature"),
gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Number of API Calls"),
],
title="AI-powered Web Search Assistant",
description="Ask questions and get answers from web search results.",
theme=gr.themes.Soft(
primary_hue="orange",
secondary_hue="amber",
neutral_hue="gray",
font=[gr.themes.GoogleFont("Exo"), "ui-sans-serif", "system-ui", "sans-serif"]
).set(
body_background_fill_dark="#0c0505",
block_background_fill_dark="#0c0505",
block_border_width="1px",
block_title_background_fill_dark="#1b0f0f",
input_background_fill_dark="#140b0b",
button_secondary_background_fill_dark="#140b0b",
border_color_accent_dark="#1b0f0f",
border_color_primary_dark="#1b0f0f",
background_fill_secondary_dark="#0c0505",
color_accent_soft_dark="transparent",
code_background_fill_dark="#140b0b"
),
css=css,
examples=[
["What are the latest developments in artificial intelligence?"],
["Can you explain the basics of quantum computing?"],
["What are the current global economic trends?"]
],
cache_examples=False,
analytics_enabled=False,
textbox=gr.Textbox(placeholder="Ask a question", container=False, scale=7),
chatbot = gr.Chatbot(
show_copy_button=True,
likeable=True,
layout="bubble",
height=400,
value=initial_conversation()
)
)
if __name__ == "__main__":
demo.launch(share=True) |