Spaces:
Sleeping
Sleeping
File size: 6,788 Bytes
bfb6e0a 8001965 bfb6e0a 8001965 97c8b2b bfb6e0a 8001965 97c8b2b bfb6e0a 8001965 bfb6e0a 8001965 bfb6e0a 8001965 bfb6e0a 8001965 bfb6e0a 8001965 bfb6e0a 8001965 a4e95d0 8001965 bfb6e0a 8001965 bfb6e0a 97c8b2b bfb6e0a 97c8b2b bfb6e0a 8001965 bfb6e0a 97c8b2b bfb6e0a 97c8b2b bfb6e0a 97c8b2b bfb6e0a 97c8b2b bfb6e0a 8001965 bfb6e0a 8001965 bfb6e0a 97c8b2b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
import streamlit as st
from transformers import AutoTokenizer
from peft import AutoPeftModelForCausalLM
import torch
import re
from transformers import StoppingCriteria, StoppingCriteriaList
import os
# Set cache directory and get token
os.environ['HF_HOME'] = '/app/cache'
hf_token = os.getenv('HF_TOKEN')
class StopWordCriteria(StoppingCriteria):
def __init__(self, tokenizer, stop_word):
self.stop_word_id = tokenizer.encode(stop_word, add_special_tokens=False)
def __call__(self, input_ids, scores, **kwargs):
if len(input_ids[0]) >= len(self.stop_word_id) and input_ids[0][-len(self.stop_word_id):].tolist() == self.stop_word_id:
return True
return False
def load_model():
try:
# Ensure cache directory exists
cache_dir = '/app/cache'
os.makedirs(cache_dir, exist_ok=True)
# Check for HF token
if not hf_token:
st.warning("HuggingFace token not found. Some models may not be accessible.")
# Check CUDA availability
if torch.cuda.is_available():
device = torch.device("cuda")
st.success(f"Using GPU: {torch.cuda.get_device_name(0)}")
else:
device = torch.device("cpu")
st.warning("CUDA is not available. Using CPU.")
# Fine-tuned model for generating scripts
model_name = "Sidharthan/gemma2_scripter"
try:
tokenizer = AutoTokenizer.from_pretrained(
model_name,
trust_remote_code=True,
token=hf_token,
cache_dir=cache_dir
)
except Exception as e:
st.error(f"Error loading tokenizer: {str(e)}")
if "401" in str(e):
st.error("Authentication error. Please check your HuggingFace token.")
raise e
try:
# Load model with appropriate device settings
model = AutoPeftModelForCausalLM.from_pretrained(
model_name,
device_map=None, # We'll handle device placement manually
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
trust_remote_code=True,
low_cpu_mem_usage=True,
token=hf_token,
cache_dir=cache_dir
)
# Move model to device
model = model.to(device)
return model, tokenizer
except Exception as e:
st.error(f"Error loading model: {str(e)}")
if "401" in str(e):
st.error("Authentication error. Please check your HuggingFace token.")
elif "disk space" in str(e).lower():
st.error("Insufficient disk space in cache directory.")
raise e
except Exception as e:
st.error(f"General error during model loading: {str(e)}")
raise e
def generate_script(tags, model, tokenizer, params):
device = next(model.parameters()).device
# Create prompt with tags
prompt = f"<bos><start_of_turn>keywords\n{tags}<end_of_turn>\n<start_of_turn>script\n"
# Tokenize and move to device
inputs = tokenizer(prompt, return_tensors='pt')
inputs = {k: v.to(device) for k, v in inputs.items()}
stop_word = 'script'
stopping_criteria = StoppingCriteriaList([StopWordCriteria(tokenizer, stop_word)])
try:
outputs = model.generate(
**inputs,
max_length=params['max_length'],
do_sample=True,
temperature=params['temperature'],
top_p=params['top_p'],
top_k=params['top_k'],
repetition_penalty=params['repetition_penalty'],
num_return_sequences=1,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
stopping_criteria=stopping_criteria
)
# Move outputs back to CPU for decoding
outputs = outputs.cpu()
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Clean up response
response = re.sub(r'keywords\s.*?script\s', '', response, flags=re.DOTALL)
response = re.sub(r'\bscript\b.*$', '', response, flags=re.IGNORECASE).strip()
return response
except RuntimeError as e:
if "out of memory" in str(e):
st.error("GPU out of memory error. Try reducing max_length or using CPU.")
return "Error: GPU out of memory"
else:
st.error(f"Error during generation: {str(e)}")
return f"Error during generation: {str(e)}"
def main():
st.title("🎥 YouTube Script Generator")
# Sidebar for model parameters
st.sidebar.title("Generation Parameters")
params = {
'max_length': st.sidebar.slider('Max Length', 64, 1024, 512),
'temperature': st.sidebar.slider('Temperature', 0.1, 1.0, 0.7),
'top_p': st.sidebar.slider('Top P', 0.1, 1.0, 0.95),
'top_k': st.sidebar.slider('Top K', 1, 100, 50),
'repetition_penalty': st.sidebar.slider('Repetition Penalty', 1.0, 2.0, 1.2)
}
# Load model and tokenizer
@st.cache_resource
def get_model():
return load_model()
try:
model, tokenizer = get_model()
# Tag input section
st.markdown("### Add Tags")
st.markdown("Enter tags separated by commas to generate a YouTube script")
# Create columns for tag input and generate button
col1, col2 = st.columns([3, 1])
with col1:
tags = st.text_input("Enter tags", placeholder="tech, AI, future, innovations...")
with col2:
generate_button = st.button("Generate Script", type="primary")
# Generated script section
if generate_button and tags:
st.markdown("### Generated Script")
with st.spinner("Generating script..."):
script = generate_script(tags, model, tokenizer, params)
st.text_area("Your script:", value=script, height=400)
# Add download button
st.download_button(
label="Download Script",
data=script,
file_name="youtube_script.txt",
mime="text/plain"
)
elif generate_button and not tags:
st.warning("Please enter some tags first!")
except Exception as e:
st.error("Failed to initialize the application. Please check the logs for details.")
st.error(f"Error: {str(e)}")
if __name__ == "__main__":
main() |