MedVQA / gradio_interface.py
SushantGautam's picture
add links to available datasets and example training notebooks in gradio interface
c6d57b5
import gradio as gr
import json
from datetime import datetime, timezone
from huggingface_hub import upload_file, snapshot_download
import shutil
import os
import glob
from pathlib import Path
from huggingface_hub import whoami
print("Account token used to connect to HuggingFace: ", whoami()['name'])
SUBMISSION_REPO = "SimulaMet/medvqa-submissions"
hub_path = None
submissions = None # [{"user": u, "task": t, "submitted_time": ts}]
last_submission_update_time = datetime.now(timezone.utc)
def refresh_submissions():
global hub_path, submissions, last_submission_update_time
if hub_path and Path(hub_path).exists():
shutil.rmtree(hub_path, ignore_errors=True)
print("Deleted existing submissions")
hub_path = snapshot_download(repo_type="dataset",
repo_id=SUBMISSION_REPO, allow_patterns=['**/*.json'])
print("Downloaded submissions to: ", hub_path)
if not os.path.exists(hub_path):
os.makedirs(hub_path) # empty repo case
print("os.listdir(hub_path):", os.listdir(hub_path))
all_jsons = glob.glob(hub_path + "/**/*.json", recursive=True)
json_files = [f.split("/")[-1] for f in all_jsons]
print("json_files count:", len(json_files))
submissions = []
for file in json_files:
username, sub_timestamp, task = file.replace(
".json", "").split("-_-_-")
submissions.append({"user": username, "task": task,
"submitted_time": sub_timestamp})
last_submission_update_time = datetime.now(timezone.utc)
return hub_path
hub_path = refresh_submissions()
print(f"{SUBMISSION_REPO} downloaded to {hub_path}")
# remove strings after snapshot in hub_path
hub_dir = hub_path.split("snapshot")[0] + "snapshot"
def time_ago(submitted_time):
return str(datetime.fromtimestamp(int(submitted_time), tz=timezone.utc)) + " UTC"
def filter_submissions(task_type, search_query):
if search_query == "":
filtered = [s for s in submissions if task_type ==
"all" or s["task"] == task_type]
else:
filtered = [s for s in submissions if (
task_type == "all" or s["task"] == task_type) and search_query.lower() in s["user"].lower()]
return [{"user": s["user"], "task": s["task"], "submitted_time": time_ago(s["submitted_time"])} for s in filtered]
def display_submissions(task_type="all", search_query=""):
if submissions is None or ((datetime.now(timezone.utc) - last_submission_update_time).total_seconds() > 3600):
refresh_submissions()
print("Displaying submissions...", submissions)
filtered_submissions = filter_submissions(task_type, search_query)
return gr.update(value=[[s["user"], s["task"], s["submitted_time"]] for s in filtered_submissions])
def add_submission(file):
global submissions
try:
print("Received submission: ", file)
with open(file, 'r', encoding='utf-8') as f:
data = json.load(f)
username, sub_timestamp, task = file.replace(
".json", "").split("-_-_-")
submission_time = datetime.fromtimestamp(
int(sub_timestamp), tz=timezone.utc)
assert task in ["task1", "task2"], "Invalid task type"
assert len(username) > 0, "Invalid username"
assert submission_time < datetime.now(
timezone.utc), "Invalid submission time"
print("Adding submission...", username, task, submission_time)
upload_file(
repo_type="dataset",
path_or_fileobj=file,
path_in_repo=task+"/"+file.split("/")[-1],
repo_id=SUBMISSION_REPO
)
refresh_submissions()
return "πŸ’ͺπŸ†πŸŽ‰ Submissions registered successfully to the system!"
except Exception as e:
raise Exception(f"Error adding submission: {e}")
def refresh_page():
return "Pong! Submission server is alive! 😊"
# Define Gradio interface components
output_table = gr.Dataframe(headers=[
"User", "Task", "Submitted Time"], interactive=False, value=[], scale=5,)
task_type_dropdown = gr.Dropdown(
choices=["all", "task1", "task2"],
value="all",
label="Task Type",
info="Filter submissions by Task 1 (VQA) or Task 2 (Synthetic Image Generation)"
)
search_box = gr.Textbox(
value="",
label="Search by Username",
info="Enter a username to filter specific submissions"
)
upload_button = gr.File(label="Upload JSON", file_types=["json"])
# Create a tabbed interface
with gr.Blocks(title="🌟ImageCLEFmed-MEDVQA-GI 2025 Submissions 🌟") as demo:
# gr.Markdown("""
# # Welcome to the official submission portal for the [MEDVQA-GI 2025](https://www.imageclef.org/2025/medical/vqa) challenge!
# - πŸ”— [Challenge Homepage](https://github.com/simula/ImageCLEFmed-MEDVQA-GI-2025) | [Register for ImageCLEF 2025](https://www.imageclef.org/2025#registration)
# - πŸ”— [Submission Insructions](https://github.com/simula/ImageCLEFmed-MEDVQA-GI-2025#-submission-system)
# """)
gr.Markdown("""
# 🌟 Welcome to the official submission portal for the [MEDVQA-GI 2025](https://www.imageclef.org/2025/medical/vqa) challenge! πŸ₯🧬
### πŸš€ [**Challenge Homepage** in GitHub](https://github.com/simula/ImageCLEFmed-MEDVQA-GI-2025) | πŸ“ [**Register** for ImageCLEF 2025](https://www.imageclef.org/2025#registration) | πŸ“… [**Competition Schedule**](https://github.com/simula/ImageCLEFmed-MEDVQA-GI-2025#:~:text=Schedule) | πŸ“¦ [**Submission Instructions**](https://github.com/simula/ImageCLEFmed-MEDVQA-GI-2025#-submission-system)πŸ”₯πŸ”₯
### πŸ“₯ [**Available Datasets**](https://github.com/simula/ImageCLEFmed-MEDVQA-GI-2025#-data) | πŸ’‘ [Tasks & Example Training **Notebooks**](https://github.com/simula/ImageCLEFmed-MEDVQA-GI-2025#-task-descriptions)πŸ’₯πŸ’₯
""")
with gr.Tab("View Submissions"):
gr.Markdown("### Submissions Table")
gr.Interface(
fn=display_submissions,
inputs=[task_type_dropdown, search_box],
outputs=output_table,
title="ImageCLEFmed-MEDVQA-GI-2025 Submissions",
description="Filter and search submissions by task type and user:"
)
gr.Markdown(
f'''
πŸ”„ Last refreshed: {last_submission_update_time.strftime('%Y-%m-%d %H:%M:%S')} UTC | πŸ“Š Total Submissions: {len(submissions)}
πŸ’¬ For any questions or issues, [contact the organizers](https://github.com/simula/ImageCLEFmed-MEDVQA-GI-2025#-organizers) or check the documentation in the [GitHub repo](https://github.com/simula/ImageCLEFmed-MEDVQA-GI-2025). Good luck and thank you for contributing to medical AI research! πŸ’ͺπŸ€–πŸŒ
''')
with gr.Tab("Upload Submission", visible=False):
file_input = gr.File(label="Upload JSON", file_types=["json"])
upload_output = gr.Textbox(label="Result") # Add this line
file_input.upload(add_submission, file_input,
upload_output)
with gr.Tab("Refresh API", visible=False):
gr.Interface(
api_name="RefreshAPI",
fn=refresh_page,
inputs=[],
outputs="text",
title="Refresh API",
description="Hidden interface to refresh the API."
)
demo.load(lambda: gr.update(value=[[s["user"], s["task"], s["submitted_time"]]
for s in filter_submissions("all", "")]), inputs=[], outputs=output_table)
demo.launch()