Spaces:
Sleeping
Sleeping
File size: 6,180 Bytes
eb2a41f 12f6335 eb2a41f 12f6335 eb2a41f 12f6335 eb2a41f 12f6335 eb2a41f 12f6335 eb2a41f 12f6335 eb2a41f 12f6335 eb2a41f 12f6335 eb2a41f 12f6335 eb2a41f 12f6335 eb2a41f 12f6335 eb2a41f 12f6335 eb2a41f 12f6335 eb2a41f 12f6335 eb2a41f 12f6335 eb2a41f 12f6335 eb2a41f 12f6335 eb2a41f 12f6335 eb2a41f 12f6335 eb2a41f 12f6335 eb2a41f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
import os
import streamlit as st
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.chains import RetrievalQA
from langchain_community.vectorstores import FAISS
from langchain_core.prompts import PromptTemplate
from langchain_huggingface import HuggingFaceEndpoint
from langchain_community.document_loaders import PyPDFLoader, DirectoryLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
# Use environment variable for Hugging Face token
HF_TOKEN = os.environ.get("HF_TOKEN")
HUGGINGFACE_REPO_ID = "mistralai/Mistral-7B-Instruct-v0.3"
DATA_PATH = "data/"
DB_FAISS_PATH = "vectorstore/db_faiss"
def load_pdf_files(data_path):
"""Load PDF files from the specified directory"""
loader = DirectoryLoader(data_path,
glob='*.pdf',
loader_cls=PyPDFLoader)
documents = loader.load()
return documents
def create_chunks(extracted_data):
"""Split documents into chunks"""
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500,
chunk_overlap=50)
text_chunks = text_splitter.split_documents(extracted_data)
return text_chunks
def get_embedding_model():
"""Get the embedding model"""
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
return embedding_model
def create_embeddings():
"""Create embeddings and save to FAISS database"""
# Step 1: Load PDFs
documents = load_pdf_files(data_path=DATA_PATH)
st.info(f"Loaded {len(documents)} documents")
# Step 2: Create chunks
text_chunks = create_chunks(extracted_data=documents)
st.info(f"Created {len(text_chunks)} text chunks")
# Step 3: Get embedding model
embedding_model = get_embedding_model()
# Step 4: Create and save embeddings
os.makedirs(os.path.dirname(DB_FAISS_PATH), exist_ok=True)
db = FAISS.from_documents(text_chunks, embedding_model)
db.save_local(DB_FAISS_PATH)
st.success("Embeddings created and saved successfully!")
return db
def set_custom_prompt(custom_prompt_template):
"""Set custom prompt template"""
prompt = PromptTemplate(template=custom_prompt_template, input_variables=["context", "question"])
return prompt
def load_llm(huggingface_repo_id):
"""Load Hugging Face LLM"""
llm = HuggingFaceEndpoint(
repo_id=huggingface_repo_id,
task="text-generation",
temperature=0.5,
model_kwargs={
"token": HF_TOKEN,
"max_length": 512
}
)
return llm
def get_vectorstore():
"""Get or create vector store"""
if os.path.exists(DB_FAISS_PATH):
st.info("Loading existing vector store...")
embedding_model = get_embedding_model()
try:
db = FAISS.load_local(DB_FAISS_PATH, embedding_model, allow_dangerous_deserialization=True)
return db
except Exception as e:
st.error(f"Error loading vector store: {e}")
st.info("Creating new vector store...")
return create_embeddings()
else:
st.info("Creating new vector store...")
return create_embeddings()
def main():
st.title("BeepKart FAQ Chatbot")
st.markdown("Ask questions about buying or selling bikes on BeepKart!")
# Initialize session state for messages
if 'messages' not in st.session_state:
st.session_state.messages = []
# Display chat history
for message in st.session_state.messages:
st.chat_message(message['role']).markdown(message['content'])
# Get user input
prompt = st.chat_input("Ask a question about BeepKart...")
# Custom prompt template
CUSTOM_PROMPT_TEMPLATE = """
Use the pieces of information provided in the context to answer user's question.
If you don't know the answer, just say that you don't know, don't try to make up an answer.
Don't provide anything out of the given context
Context: {context}
Question: {question}
Start the answer directly. No small talk please.
"""
if prompt:
# Display user message
st.chat_message('user').markdown(prompt)
st.session_state.messages.append({'role': 'user', 'content': prompt})
try:
with st.spinner("Thinking..."):
# Get vector store
vectorstore = get_vectorstore()
# Create QA chain
qa_chain = RetrievalQA.from_chain_type(
llm=load_llm(huggingface_repo_id=HUGGINGFACE_REPO_ID),
chain_type="stuff",
retriever=vectorstore.as_retriever(search_kwargs={'k': 3}),
return_source_documents=True,
chain_type_kwargs={'prompt': set_custom_prompt(CUSTOM_PROMPT_TEMPLATE)}
)
# Get response
response = qa_chain.invoke({'query': prompt})
# Extract result and sources
result = response["result"]
source_documents = response["source_documents"]
# Format source documents
source_docs_text = "\n\n**Sources:**\n"
for i, doc in enumerate(source_documents, 1):
source_docs_text += f"{i}. Page {doc.metadata.get('page', 'N/A')}: {doc.page_content[:100]}...\n\n"
# Display result and sources
result_to_show = f"{result}\n{source_docs_text}"
st.chat_message('assistant').markdown(result_to_show)
st.session_state.messages.append({'role': 'assistant', 'content': result_to_show})
except Exception as e:
error_message = f"Error: {str(e)}"
st.error(error_message)
st.error("Please check your HuggingFace token and model access permissions")
st.session_state.messages.append({'role': 'assistant', 'content': error_message})
if __name__ == "__main__":
main() |