Spaces:
Running
Running
File size: 22,205 Bytes
1173d05 408fdbe 1173d05 a126aef 1173d05 c354b1a 1173d05 c354b1a 1173d05 408fdbe 1173d05 408fdbe e1a29fd 1173d05 408fdbe 1173d05 408fdbe 1173d05 408fdbe 1173d05 c354b1a 1173d05 c354b1a 408fdbe 1173d05 408fdbe 1173d05 e1a29fd 1173d05 e1a29fd 408fdbe 1173d05 e1a29fd 1173d05 e1a29fd 408fdbe 1173d05 e1a29fd 1173d05 e1a29fd 408fdbe e1a29fd 408fdbe e1a29fd 408fdbe e1a29fd 408fdbe e1a29fd 408fdbe e1a29fd 1173d05 e1a29fd 1173d05 e1a29fd 1173d05 e1a29fd 1173d05 e1a29fd 1173d05 e1a29fd 1173d05 e1a29fd 1173d05 e1a29fd 1173d05 e1a29fd 1173d05 e1a29fd 1173d05 e1a29fd 1173d05 e1a29fd 1173d05 e1a29fd 1173d05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 |
import streamlit as st
import numpy as np
import torch
import torch.nn as nn
import torchvision.transforms as transforms
from torchvision import models
from PIL import Image
import cv2
from ultralytics import YOLO
import os
import random
from streamlit_image_coordinates import streamlit_image_coordinates
# Set page config
st.set_page_config(
page_title="Traffic Light Detection App",
layout="wide",
menu_items={
'Get Help': 'https://github.com/yourusername/traffic-light-detection',
'Report a bug': "https://github.com/yourusername/traffic-light-detection/issues",
'About': "# Traffic Light Detection App\nThis app detects traffic lights and monitors objects in a protection area."
}
)
# Define allowed classes
ALLOWED_CLASSES = {
'person', 'bicycle', 'car', 'motorcycle', 'bus', 'truck',
'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe'
}
@st.cache_resource
def initialize_models():
try:
# Set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Initialize MobileNetV3 model
model = models.mobilenet_v3_small(weights=None)
model.classifier = nn.Sequential(
nn.Linear(576, 2), # Direct mapping to output classes
nn.Softmax(dim=1)
)
model = model.to(device)
# Load model weights
best_model_path = "best_model_mobilenet_v3_v2.pth"
if not os.path.exists(best_model_path):
st.error(f"Model file not found: {best_model_path}")
return None, None, None, None
if device.type == 'cuda':
model.load_state_dict(torch.load(best_model_path))
else:
model.load_state_dict(torch.load(best_model_path, map_location=torch.device('cpu')))
model.eval()
# Load YOLO model for object detection
yolo_model_path = "yolo11s.onnx"
if not os.path.exists(yolo_model_path):
st.error(f"YOLO model file not found: {yolo_model_path}")
return device, model, None, None
yolo_model = YOLO(yolo_model_path)
# Load YOLO segmentation model
seg_model_path = "best_segment.pt"
if not os.path.exists(seg_model_path):
st.error(f"YOLO segmentation model file not found: {seg_model_path}")
return device, model, yolo_model, None
seg_model = YOLO(seg_model_path)
return device, model, yolo_model, seg_model
except Exception as e:
st.error(f"Error initializing models: {str(e)}")
return None, None, None, None
def process_image(image, model, device):
# Define image transformations
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# Process image
input_tensor = transform(image).unsqueeze(0).to(device)
# Perform inference
with torch.no_grad():
output = model(input_tensor)
probabilities = output[0] # Get probabilities for both classes
# Class 0 is "No Red Light", Class 1 is "Red Light"
no_red_light_prob = probabilities[0].item()
red_light_prob = probabilities[1].item()
is_red_light = red_light_prob > no_red_light_prob
return is_red_light, red_light_prob, no_red_light_prob
def is_point_in_polygon(point, polygon):
"""Check if a point is inside a polygon using ray casting algorithm."""
x, y = point
n = len(polygon)
inside = False
p1x, p1y = polygon[0]
for i in range(n + 1):
p2x, p2y = polygon[i % n]
if y > min(p1y, p2y):
if y <= max(p1y, p2y):
if x <= max(p1x, p2x):
if p1y != p2y:
xinters = (y - p1y) * (p2x - p1x) / (p2y - p1y) + p1x
if p1x == p2x or x <= xinters:
inside = not inside
p1x, p1y = p2x, p2y
return inside
def is_bbox_in_area(bbox, protection_area, image_shape):
"""Check if bounding box center is in protection area."""
# Get bbox center point
center_x = (bbox[0] + bbox[2]) / 2
center_y = (bbox[1] + bbox[3]) / 2
return is_point_in_polygon((center_x, center_y), protection_area)
def put_text_with_background(img, text, position, font_scale=0.8, thickness=2, font=cv2.FONT_HERSHEY_SIMPLEX):
"""Put text with background on image."""
# Get text size
(text_width, text_height), baseline = cv2.getTextSize(text, font, font_scale, thickness)
# Calculate background rectangle
padding = 5
bg_rect_pt1 = (position[0], position[1] - text_height - padding)
bg_rect_pt2 = (position[0] + text_width + padding * 2, position[1] + padding)
# Draw background rectangle
cv2.rectangle(img, bg_rect_pt1, bg_rect_pt2, (0, 0, 0), -1)
# Put text
cv2.putText(img, text, (position[0] + padding, position[1]), font, font_scale, (255, 255, 255), thickness)
def calculate_iou(box1, box2):
"""Calculate Intersection over Union between two bounding boxes."""
x1 = max(box1[0], box2[0])
y1 = max(box1[1], box2[1])
x2 = min(box1[2], box2[2])
y2 = min(box1[3], box2[3])
intersection = max(0, x2 - x1) * max(0, y2 - y1)
box1_area = (box1[2] - box1[0]) * (box1[3] - box1[1])
box2_area = (box2[2] - box2[0]) * (box2[3] - box2[1])
union = box1_area + box2_area - intersection
return intersection / union if union > 0 else 0
def merge_overlapping_detections(detections, iou_threshold=0.5):
"""Merge overlapping detections of the same class."""
if not detections:
return []
# Sort detections by confidence
detections = sorted(detections, key=lambda x: x['confidence'], reverse=True)
merged_detections = []
while detections:
best_detection = detections.pop(0)
i = 0
while i < len(detections):
current_detection = detections[i]
if (current_detection['class'] == best_detection['class'] and
calculate_iou(current_detection['bbox'], best_detection['bbox']) >= iou_threshold):
# Remove the lower confidence detection
detections.pop(i)
else:
i += 1
merged_detections.append(best_detection)
return merged_detections
def get_segmentation_masks(image, seg_model, conf_threshold=0.25):
"""Get segmentation masks from YOLO segmentation model."""
results = seg_model(image, conf=conf_threshold)
masks = []
if results and len(results) > 0 and results[0].masks is not None:
for i, mask in enumerate(results[0].masks.xy):
class_id = int(results[0].boxes.cls[i])
class_name = results[0].names[class_id]
confidence = float(results[0].boxes.conf[i])
# Convert mask to numpy array
mask_np = np.array(mask, dtype=np.int32)
masks.append({
'mask': mask_np,
'class': class_name,
'confidence': confidence,
'class_id': class_id
})
return masks, results
def main():
st.title("Train obstruction detection V1.2")
# Initialize session state
if 'points' not in st.session_state:
st.session_state.points = []
if 'protection_area_defined' not in st.session_state:
st.session_state.protection_area_defined = False
if 'current_step' not in st.session_state:
st.session_state.current_step = 1
if 'protection_method' not in st.session_state:
st.session_state.protection_method = "manual"
if 'segmentation_masks' not in st.session_state:
st.session_state.segmentation_masks = []
if 'selected_mask_index' not in st.session_state:
st.session_state.selected_mask_index = -1
# Initialize models
device, model, yolo_model, seg_model = initialize_models()
# Create tabs for the two steps
step1, step2 = st.tabs(["Step 1: Define Protection Area", "Step 2: Detect Objects"])
with step1:
st.header("Step 1: Define Protection Area")
# Method selection
method = st.radio(
"Select method to define protection area:",
["Manual (Click 4 points)", "Automatic Segmentation (Select a segment)"],
index=0 if st.session_state.protection_method == "manual" else 1,
key="method_selection"
)
# Update protection method in session state
st.session_state.protection_method = "manual" if method == "Manual (Click 4 points)" else "yolo"
# File uploader for protection area definition
setup_image = st.file_uploader("Choose an image for protection area setup", type=['jpg', 'jpeg', 'png'], key="setup_image")
if setup_image is not None:
# Convert uploaded file to PIL Image
image = Image.open(setup_image).convert('RGB')
# Convert to OpenCV format for drawing
cv_image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
height, width = cv_image.shape[:2]
# Create a copy for drawing
draw_image = cv_image.copy()
# Reset button
if st.button('Reset Points/Selection'):
st.session_state.points = []
st.session_state.protection_area_defined = False
st.session_state.selected_mask_index = -1
# Clear segmentation masks to force re-detection
st.session_state.segmentation_masks = []
if 'mask_colors' in st.session_state:
del st.session_state.mask_colors
st.rerun()
# Manual method
if st.session_state.protection_method == "manual":
# Instructions
st.write("๐ Click directly on the image to add points for the protection area (need 4 points)")
# Display current image with points
if len(st.session_state.points) > 0:
# Draw existing points and lines
points = np.array(st.session_state.points, dtype=np.int32)
cv2.polylines(draw_image, [points],
True if len(points) == 4 else False,
(0, 255, 0), 2)
# Draw points with numbers
for i, point in enumerate(points):
cv2.circle(draw_image, tuple(point), 5, (0, 0, 255), -1)
cv2.putText(draw_image, str(i+1),
(point[0]+10, point[1]+10),
cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 2)
# Create columns for better layout
col1, col2 = st.columns([4, 1])
with col1:
# Display the image and handle click events
if len(st.session_state.points) < 4:
clicked = streamlit_image_coordinates(
cv2.cvtColor(draw_image, cv2.COLOR_BGR2RGB),
key=f"image_coordinates_{len(st.session_state.points)}"
)
if clicked is not None and clicked.get('x') is not None and clicked.get('y') is not None:
x, y = clicked['x'], clicked['y']
if 0 <= x < width and 0 <= y < height:
st.session_state.points.append([x, y])
if len(st.session_state.points) == 4:
st.session_state.protection_area_defined = True
st.rerun()
else:
st.image(cv2.cvtColor(draw_image, cv2.COLOR_BGR2RGB))
with col2:
st.write(f"Points: {len(st.session_state.points)}/4")
if len(st.session_state.points) > 0:
st.write("Current Points:")
for i, point in enumerate(st.session_state.points):
st.write(f"Point {i+1}: ({point[0]}, {point[1]})")
# YOLO Segmentation method
else:
if seg_model is None:
st.error("YOLO segmentation model not loaded. Please check the error messages above.")
else:
# Always run segmentation when in YOLO mode to ensure fresh results
with st.spinner("Running segmentation..."):
masks, results = get_segmentation_masks(cv_image, seg_model)
st.session_state.segmentation_masks = masks
# Generate random colors for each mask
st.session_state.mask_colors = []
for _ in range(len(masks)):
st.session_state.mask_colors.append([random.randint(0, 255) for _ in range(3)])
# Display segmentation results
if len(st.session_state.segmentation_masks) > 0:
# Create a copy of the image for drawing masks
mask_image = cv_image.copy()
# Draw all masks with transparency
for i, mask_data in enumerate(st.session_state.segmentation_masks):
mask = mask_data['mask']
color = st.session_state.mask_colors[i]
# Create a blank image for this mask
mask_overlay = np.zeros_like(mask_image)
# Draw the filled polygon
cv2.fillPoly(mask_overlay, [mask], color)
# Add the mask to the image with transparency
alpha = 0.4
if i == st.session_state.selected_mask_index:
alpha = 0.7 # Make selected mask more visible
mask_image = cv2.addWeighted(mask_image, 1, mask_overlay, alpha, 0)
# Draw the polygon outline
line_thickness = 2
if i == st.session_state.selected_mask_index:
line_thickness = 4 # Make selected mask outline thicker
cv2.polylines(mask_image, [mask], True, color, line_thickness)
# Add class label
class_name = mask_data['class']
confidence = mask_data['confidence']
label = f"{class_name} {confidence:.2f}"
# Find a good position for the label (use the top-left point of the mask)
label_pos = (int(mask[0][0]), int(mask[0][1]) - 10)
put_text_with_background(mask_image, label, label_pos)
# Display the image with masks
col1, col2 = st.columns([4, 1])
with col1:
st.image(cv2.cvtColor(mask_image, cv2.COLOR_BGR2RGB))
with col2:
st.write("Available Segments:")
for i, mask_data in enumerate(st.session_state.segmentation_masks):
if st.button(f"Select {mask_data['class']} #{i+1}", key=f"select_mask_{i}"):
st.session_state.selected_mask_index = i
# Use the selected mask as protection area
st.session_state.points = mask_data['mask'].tolist()
st.session_state.protection_area_defined = True
st.rerun()
# Add a re-detect button
if st.button("Re-detect Segments"):
st.session_state.segmentation_masks = []
if 'mask_colors' in st.session_state:
del st.session_state.mask_colors
st.session_state.selected_mask_index = -1
st.rerun()
else:
st.warning("No segmentation masks found in the image. Try another image or use manual method.")
with step2:
st.header("Step 2: Detect Objects")
if not st.session_state.protection_area_defined:
st.warning("โ ๏ธ Please complete Step 1 first to define the protection area.")
return
st.write("Upload images to detect red lights and objects in the protection area")
# File uploader for detection
detection_image = st.file_uploader("Choose an image for detection", type=['jpg', 'jpeg', 'png'], key="detection_image")
if detection_image is not None:
if device is None or model is None:
st.error("Failed to initialize models. Please check the error messages above.")
return
# Load and process image
image = Image.open(detection_image).convert('RGB')
cv_image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
# Process image for red light detection
is_red_light, red_light_prob, no_red_light_prob = process_image(image, model, device)
# Display red light detection results
st.write("\n๐ฅ Red Light Detection Results:")
st.write(f"Red Light Detected: {is_red_light}")
st.write(f"Red Light Probability: {red_light_prob:.2%}")
st.write(f"No Red Light Probability: {no_red_light_prob:.2%}")
if is_red_light and yolo_model is not None:
# Draw protection area
cv2.polylines(cv_image, [np.array(st.session_state.points)], True, (0, 255, 0), 2)
# Run YOLO detection
results = yolo_model(cv_image, conf=0.25)
# Process detections
detection_results = []
for result in results:
if result.boxes is not None:
for box in result.boxes:
class_id = int(box.cls[0])
class_name = yolo_model.names[class_id]
if class_name in ALLOWED_CLASSES:
bbox = box.xyxy[0].cpu().numpy()
if is_bbox_in_area(bbox, st.session_state.points, cv_image.shape):
confidence = float(box.conf[0])
detection_results.append({
'class': class_name,
'confidence': confidence,
'bbox': bbox
})
# Merge overlapping detections
detection_results = merge_overlapping_detections(detection_results, iou_threshold=0.5)
# Draw detections
for det in detection_results:
bbox = det['bbox']
# Draw detection box
cv2.rectangle(cv_image,
(int(bbox[0]), int(bbox[1])),
(int(bbox[2]), int(bbox[3])),
(0, 0, 255), 2)
# Add label
text = f"{det['class']}: {det['confidence']:.2%}"
put_text_with_background(cv_image, text,
(int(bbox[0]), int(bbox[1]) - 10))
# Add status text
status_text = f"Red Light: DETECTED ({red_light_prob:.1%})"
put_text_with_background(cv_image, status_text, (10, 30), font_scale=1.0, thickness=2)
count_text = f"Objects in Protection Area: {len(detection_results)}"
put_text_with_background(cv_image, count_text, (10, 70), font_scale=0.8)
# Display results
st.image(cv2.cvtColor(cv_image, cv2.COLOR_BGR2RGB))
# Display detections
if detection_results:
st.write("\n๐ฏ Detected Objects in Protection Area:")
for i, det in enumerate(detection_results, 1):
st.write(f"\nObject {i}:")
st.write(f"- Class: {det['class']}")
st.write(f"- Confidence: {det['confidence']:.2%}")
else:
st.write("\nNo objects detected in protection area")
else:
status_text = f"Red Light: NOT DETECTED ({red_light_prob:.1%})"
put_text_with_background(cv_image, status_text, (10, 30), font_scale=1.0, thickness=2)
st.image(cv2.cvtColor(cv_image, cv2.COLOR_BGR2RGB))
if __name__ == "__main__":
main() |