File size: 22,205 Bytes
1173d05
 
 
 
 
 
 
 
 
 
408fdbe
1173d05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a126aef
1173d05
 
 
 
 
 
 
 
 
c354b1a
 
 
 
1173d05
 
 
 
 
c354b1a
1173d05
 
408fdbe
1173d05
 
 
 
 
 
 
408fdbe
e1a29fd
1173d05
 
408fdbe
1173d05
 
408fdbe
 
 
 
 
 
 
 
 
 
1173d05
 
 
408fdbe
1173d05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c354b1a
 
1173d05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c354b1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
408fdbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1173d05
408fdbe
1173d05
e1a29fd
1173d05
 
e1a29fd
 
 
 
408fdbe
 
 
 
 
 
 
 
 
1173d05
e1a29fd
 
1173d05
e1a29fd
 
408fdbe
 
 
 
 
 
 
 
 
 
 
1173d05
e1a29fd
 
1173d05
e1a29fd
 
 
 
 
 
 
 
 
 
 
 
408fdbe
e1a29fd
 
408fdbe
 
 
 
 
e1a29fd
 
408fdbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1a29fd
408fdbe
 
 
 
e1a29fd
408fdbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1a29fd
 
 
1173d05
e1a29fd
 
 
1173d05
e1a29fd
1173d05
e1a29fd
 
1173d05
e1a29fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1173d05
e1a29fd
 
1173d05
e1a29fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1173d05
e1a29fd
 
1173d05
e1a29fd
 
 
 
 
 
 
 
 
 
 
 
 
1173d05
e1a29fd
 
 
1173d05
e1a29fd
 
1173d05
e1a29fd
 
 
 
 
 
 
 
 
 
1173d05
e1a29fd
 
 
 
 
1173d05
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
import streamlit as st
import numpy as np
import torch
import torch.nn as nn
import torchvision.transforms as transforms
from torchvision import models
from PIL import Image
import cv2
from ultralytics import YOLO
import os
import random
from streamlit_image_coordinates import streamlit_image_coordinates

# Set page config
st.set_page_config(
    page_title="Traffic Light Detection App",
    layout="wide",
    menu_items={
        'Get Help': 'https://github.com/yourusername/traffic-light-detection',
        'Report a bug': "https://github.com/yourusername/traffic-light-detection/issues",
        'About': "# Traffic Light Detection App\nThis app detects traffic lights and monitors objects in a protection area."
    }
)

# Define allowed classes
ALLOWED_CLASSES = {
    'person', 'bicycle', 'car', 'motorcycle', 'bus', 'truck',
    'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe'
}

@st.cache_resource
def initialize_models():
    try:
        # Set device
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        
        # Initialize MobileNetV3 model
        model = models.mobilenet_v3_small(weights=None)
        model.classifier = nn.Sequential(
            nn.Linear(576, 2),  # Direct mapping to output classes
            nn.Softmax(dim=1)
        )
        model = model.to(device)
        
        # Load model weights
        best_model_path = "best_model_mobilenet_v3_v2.pth"
        if not os.path.exists(best_model_path):
            st.error(f"Model file not found: {best_model_path}")
            return None, None, None, None
            
        if device.type == 'cuda':
            model.load_state_dict(torch.load(best_model_path))
        else:
            model.load_state_dict(torch.load(best_model_path, map_location=torch.device('cpu')))
        model.eval()
        
        # Load YOLO model for object detection
        yolo_model_path = "yolo11s.onnx" 
        if not os.path.exists(yolo_model_path):
            st.error(f"YOLO model file not found: {yolo_model_path}")
            return device, model, None, None
            
        yolo_model = YOLO(yolo_model_path)
        
        # Load YOLO segmentation model
        seg_model_path = "best_segment.pt"
        if not os.path.exists(seg_model_path):
            st.error(f"YOLO segmentation model file not found: {seg_model_path}")
            return device, model, yolo_model, None
            
        seg_model = YOLO(seg_model_path)
        
        return device, model, yolo_model, seg_model
        
    except Exception as e:
        st.error(f"Error initializing models: {str(e)}")
        return None, None, None, None

def process_image(image, model, device):
    # Define image transformations
    transform = transforms.Compose([
        transforms.Resize((224, 224)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
    ])
    
    # Process image
    input_tensor = transform(image).unsqueeze(0).to(device)
    
    # Perform inference
    with torch.no_grad():
        output = model(input_tensor)
        probabilities = output[0]  # Get probabilities for both classes
        # Class 0 is "No Red Light", Class 1 is "Red Light"
        no_red_light_prob = probabilities[0].item()
        red_light_prob = probabilities[1].item()
        is_red_light = red_light_prob > no_red_light_prob
    
    return is_red_light, red_light_prob, no_red_light_prob

def is_point_in_polygon(point, polygon):
    """Check if a point is inside a polygon using ray casting algorithm."""
    x, y = point
    n = len(polygon)
    inside = False
    p1x, p1y = polygon[0]
    for i in range(n + 1):
        p2x, p2y = polygon[i % n]
        if y > min(p1y, p2y):
            if y <= max(p1y, p2y):
                if x <= max(p1x, p2x):
                    if p1y != p2y:
                        xinters = (y - p1y) * (p2x - p1x) / (p2y - p1y) + p1x
                    if p1x == p2x or x <= xinters:
                        inside = not inside
        p1x, p1y = p2x, p2y
    return inside

def is_bbox_in_area(bbox, protection_area, image_shape):
    """Check if bounding box center is in protection area."""
    # Get bbox center point
    center_x = (bbox[0] + bbox[2]) / 2
    center_y = (bbox[1] + bbox[3]) / 2
    return is_point_in_polygon((center_x, center_y), protection_area)

def put_text_with_background(img, text, position, font_scale=0.8, thickness=2, font=cv2.FONT_HERSHEY_SIMPLEX):
    """Put text with background on image."""
    # Get text size
    (text_width, text_height), baseline = cv2.getTextSize(text, font, font_scale, thickness)
    
    # Calculate background rectangle
    padding = 5
    bg_rect_pt1 = (position[0], position[1] - text_height - padding)
    bg_rect_pt2 = (position[0] + text_width + padding * 2, position[1] + padding)
    
    # Draw background rectangle
    cv2.rectangle(img, bg_rect_pt1, bg_rect_pt2, (0, 0, 0), -1)
    
    # Put text
    cv2.putText(img, text, (position[0] + padding, position[1]), font, font_scale, (255, 255, 255), thickness)

def calculate_iou(box1, box2):
    """Calculate Intersection over Union between two bounding boxes."""
    x1 = max(box1[0], box2[0])
    y1 = max(box1[1], box2[1])
    x2 = min(box1[2], box2[2])
    y2 = min(box1[3], box2[3])
    
    intersection = max(0, x2 - x1) * max(0, y2 - y1)
    box1_area = (box1[2] - box1[0]) * (box1[3] - box1[1])
    box2_area = (box2[2] - box2[0]) * (box2[3] - box2[1])
    union = box1_area + box2_area - intersection
    
    return intersection / union if union > 0 else 0

def merge_overlapping_detections(detections, iou_threshold=0.5):
    """Merge overlapping detections of the same class."""
    if not detections:
        return []
        
    # Sort detections by confidence
    detections = sorted(detections, key=lambda x: x['confidence'], reverse=True)
    merged_detections = []
    
    while detections:
        best_detection = detections.pop(0)
        i = 0
        while i < len(detections):
            current_detection = detections[i]
            if (current_detection['class'] == best_detection['class'] and 
                calculate_iou(current_detection['bbox'], best_detection['bbox']) >= iou_threshold):
                # Remove the lower confidence detection
                detections.pop(i)
            else:
                i += 1
        merged_detections.append(best_detection)
    
    return merged_detections

def get_segmentation_masks(image, seg_model, conf_threshold=0.25):
    """Get segmentation masks from YOLO segmentation model."""
    results = seg_model(image, conf=conf_threshold)
    
    masks = []
    if results and len(results) > 0 and results[0].masks is not None:
        for i, mask in enumerate(results[0].masks.xy):
            class_id = int(results[0].boxes.cls[i])
            class_name = results[0].names[class_id]
            confidence = float(results[0].boxes.conf[i])
            
            # Convert mask to numpy array
            mask_np = np.array(mask, dtype=np.int32)
            
            masks.append({
                'mask': mask_np,
                'class': class_name,
                'confidence': confidence,
                'class_id': class_id
            })
    
    return masks, results

def main():
    st.title("Train obstruction detection V1.2")
    
    # Initialize session state
    if 'points' not in st.session_state:
        st.session_state.points = []
    if 'protection_area_defined' not in st.session_state:
        st.session_state.protection_area_defined = False
    if 'current_step' not in st.session_state:
        st.session_state.current_step = 1
    if 'protection_method' not in st.session_state:
        st.session_state.protection_method = "manual"
    if 'segmentation_masks' not in st.session_state:
        st.session_state.segmentation_masks = []
    if 'selected_mask_index' not in st.session_state:
        st.session_state.selected_mask_index = -1
    
    # Initialize models
    device, model, yolo_model, seg_model = initialize_models()
    
    # Create tabs for the two steps
    step1, step2 = st.tabs(["Step 1: Define Protection Area", "Step 2: Detect Objects"])
    
    with step1:
        st.header("Step 1: Define Protection Area")
        
        # Method selection
        method = st.radio(
            "Select method to define protection area:",
            ["Manual (Click 4 points)", "Automatic Segmentation (Select a segment)"],
            index=0 if st.session_state.protection_method == "manual" else 1,
            key="method_selection"
        )
        
        # Update protection method in session state
        st.session_state.protection_method = "manual" if method == "Manual (Click 4 points)" else "yolo"
        
        # File uploader for protection area definition
        setup_image = st.file_uploader("Choose an image for protection area setup", type=['jpg', 'jpeg', 'png'], key="setup_image")
        
        if setup_image is not None:
            # Convert uploaded file to PIL Image
            image = Image.open(setup_image).convert('RGB')
            
            # Convert to OpenCV format for drawing
            cv_image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
            height, width = cv_image.shape[:2]
            
            # Create a copy for drawing
            draw_image = cv_image.copy()
            
            # Reset button
            if st.button('Reset Points/Selection'):
                st.session_state.points = []
                st.session_state.protection_area_defined = False
                st.session_state.selected_mask_index = -1
                # Clear segmentation masks to force re-detection
                st.session_state.segmentation_masks = []
                if 'mask_colors' in st.session_state:
                    del st.session_state.mask_colors
                st.rerun()
            
            # Manual method
            if st.session_state.protection_method == "manual":
                # Instructions
                st.write("๐Ÿ‘† Click directly on the image to add points for the protection area (need 4 points)")
                
                # Display current image with points
                if len(st.session_state.points) > 0:
                    # Draw existing points and lines
                    points = np.array(st.session_state.points, dtype=np.int32)
                    cv2.polylines(draw_image, [points], 
                                 True if len(points) == 4 else False, 
                                 (0, 255, 0), 2)
                    # Draw points with numbers
                    for i, point in enumerate(points):
                        cv2.circle(draw_image, tuple(point), 5, (0, 0, 255), -1)
                        cv2.putText(draw_image, str(i+1), 
                                  (point[0]+10, point[1]+10),
                                  cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 2)
                
                # Create columns for better layout
                col1, col2 = st.columns([4, 1])
                
                with col1:
                    # Display the image and handle click events
                    if len(st.session_state.points) < 4:
                        clicked = streamlit_image_coordinates(
                            cv2.cvtColor(draw_image, cv2.COLOR_BGR2RGB),
                            key=f"image_coordinates_{len(st.session_state.points)}"
                        )
                        
                        if clicked is not None and clicked.get('x') is not None and clicked.get('y') is not None:
                            x, y = clicked['x'], clicked['y']
                            if 0 <= x < width and 0 <= y < height:
                                st.session_state.points.append([x, y])
                                if len(st.session_state.points) == 4:
                                    st.session_state.protection_area_defined = True
                                st.rerun()
                    else:
                        st.image(cv2.cvtColor(draw_image, cv2.COLOR_BGR2RGB))
                
                with col2:
                    st.write(f"Points: {len(st.session_state.points)}/4")
                    if len(st.session_state.points) > 0:
                        st.write("Current Points:")
                        for i, point in enumerate(st.session_state.points):
                            st.write(f"Point {i+1}: ({point[0]}, {point[1]})")
            
            # YOLO Segmentation method
            else:
                if seg_model is None:
                    st.error("YOLO segmentation model not loaded. Please check the error messages above.")
                else:
                    # Always run segmentation when in YOLO mode to ensure fresh results
                    with st.spinner("Running segmentation..."):
                        masks, results = get_segmentation_masks(cv_image, seg_model)
                        st.session_state.segmentation_masks = masks
                        
                        # Generate random colors for each mask
                        st.session_state.mask_colors = []
                        for _ in range(len(masks)):
                            st.session_state.mask_colors.append([random.randint(0, 255) for _ in range(3)])
                    
                    # Display segmentation results
                    if len(st.session_state.segmentation_masks) > 0:
                        # Create a copy of the image for drawing masks
                        mask_image = cv_image.copy()
                        
                        # Draw all masks with transparency
                        for i, mask_data in enumerate(st.session_state.segmentation_masks):
                            mask = mask_data['mask']
                            color = st.session_state.mask_colors[i]
                            
                            # Create a blank image for this mask
                            mask_overlay = np.zeros_like(mask_image)
                            
                            # Draw the filled polygon
                            cv2.fillPoly(mask_overlay, [mask], color)
                            
                            # Add the mask to the image with transparency
                            alpha = 0.4
                            if i == st.session_state.selected_mask_index:
                                alpha = 0.7  # Make selected mask more visible
                            
                            mask_image = cv2.addWeighted(mask_image, 1, mask_overlay, alpha, 0)
                            
                            # Draw the polygon outline
                            line_thickness = 2
                            if i == st.session_state.selected_mask_index:
                                line_thickness = 4  # Make selected mask outline thicker
                            
                            cv2.polylines(mask_image, [mask], True, color, line_thickness)
                            
                            # Add class label
                            class_name = mask_data['class']
                            confidence = mask_data['confidence']
                            label = f"{class_name} {confidence:.2f}"
                            
                            # Find a good position for the label (use the top-left point of the mask)
                            label_pos = (int(mask[0][0]), int(mask[0][1]) - 10)
                            put_text_with_background(mask_image, label, label_pos)
                        
                        # Display the image with masks
                        col1, col2 = st.columns([4, 1])
                        
                        with col1:
                            st.image(cv2.cvtColor(mask_image, cv2.COLOR_BGR2RGB))
                        
                        with col2:
                            st.write("Available Segments:")
                            for i, mask_data in enumerate(st.session_state.segmentation_masks):
                                if st.button(f"Select {mask_data['class']} #{i+1}", key=f"select_mask_{i}"):
                                    st.session_state.selected_mask_index = i
                                    # Use the selected mask as protection area
                                    st.session_state.points = mask_data['mask'].tolist()
                                    st.session_state.protection_area_defined = True
                                    st.rerun()
                            
                            # Add a re-detect button
                            if st.button("Re-detect Segments"):
                                st.session_state.segmentation_masks = []
                                if 'mask_colors' in st.session_state:
                                    del st.session_state.mask_colors
                                st.session_state.selected_mask_index = -1
                                st.rerun()
                    else:
                        st.warning("No segmentation masks found in the image. Try another image or use manual method.")
    
    with step2:
        st.header("Step 2: Detect Objects")
        
        if not st.session_state.protection_area_defined:
            st.warning("โš ๏ธ Please complete Step 1 first to define the protection area.")
            return
        
        st.write("Upload images to detect red lights and objects in the protection area")
        
        # File uploader for detection
        detection_image = st.file_uploader("Choose an image for detection", type=['jpg', 'jpeg', 'png'], key="detection_image")
        
        if detection_image is not None:
            if device is None or model is None:
                st.error("Failed to initialize models. Please check the error messages above.")
                return
            
            # Load and process image
            image = Image.open(detection_image).convert('RGB')
            cv_image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
            
            # Process image for red light detection
            is_red_light, red_light_prob, no_red_light_prob = process_image(image, model, device)
            
            # Display red light detection results
            st.write("\n๐Ÿ”ฅ Red Light Detection Results:")
            st.write(f"Red Light Detected: {is_red_light}")
            st.write(f"Red Light Probability: {red_light_prob:.2%}")
            st.write(f"No Red Light Probability: {no_red_light_prob:.2%}")
            
            if is_red_light and yolo_model is not None:
                # Draw protection area
                cv2.polylines(cv_image, [np.array(st.session_state.points)], True, (0, 255, 0), 2)
                
                # Run YOLO detection
                results = yolo_model(cv_image, conf=0.25)
                
                # Process detections
                detection_results = []
                for result in results:
                    if result.boxes is not None:
                        for box in result.boxes:
                            class_id = int(box.cls[0])
                            class_name = yolo_model.names[class_id]
                            
                            if class_name in ALLOWED_CLASSES:
                                bbox = box.xyxy[0].cpu().numpy()
                                
                                if is_bbox_in_area(bbox, st.session_state.points, cv_image.shape):
                                    confidence = float(box.conf[0])
                                    detection_results.append({
                                        'class': class_name,
                                        'confidence': confidence,
                                        'bbox': bbox
                                    })
                
                # Merge overlapping detections
                detection_results = merge_overlapping_detections(detection_results, iou_threshold=0.5)
                
                # Draw detections
                for det in detection_results:
                    bbox = det['bbox']
                    # Draw detection box
                    cv2.rectangle(cv_image, 
                                (int(bbox[0]), int(bbox[1])), 
                                (int(bbox[2]), int(bbox[3])), 
                                (0, 0, 255), 2)
                    
                    # Add label
                    text = f"{det['class']}: {det['confidence']:.2%}"
                    put_text_with_background(cv_image, text, 
                                           (int(bbox[0]), int(bbox[1]) - 10))
                
                # Add status text
                status_text = f"Red Light: DETECTED ({red_light_prob:.1%})"
                put_text_with_background(cv_image, status_text, (10, 30), font_scale=1.0, thickness=2)
                
                count_text = f"Objects in Protection Area: {len(detection_results)}"
                put_text_with_background(cv_image, count_text, (10, 70), font_scale=0.8)
                
                # Display results
                st.image(cv2.cvtColor(cv_image, cv2.COLOR_BGR2RGB))
                
                # Display detections
                if detection_results:
                    st.write("\n๐ŸŽฏ Detected Objects in Protection Area:")
                    for i, det in enumerate(detection_results, 1):
                        st.write(f"\nObject {i}:")
                        st.write(f"- Class: {det['class']}")
                        st.write(f"- Confidence: {det['confidence']:.2%}")
                else:
                    st.write("\nNo objects detected in protection area")
            else:
                status_text = f"Red Light: NOT DETECTED ({red_light_prob:.1%})"
                put_text_with_background(cv_image, status_text, (10, 30), font_scale=1.0, thickness=2)
                st.image(cv2.cvtColor(cv_image, cv2.COLOR_BGR2RGB))

if __name__ == "__main__":
    main()