File size: 7,916 Bytes
29bcdf2
 
 
 
 
435eb8d
2cc5732
435eb8d
c2ddd50
 
2cc5732
c2ddd50
 
29bcdf2
8be899f
c2ddd50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2cc5732
 
 
 
c2ddd50
2cc5732
 
 
c2ddd50
2cc5732
 
 
c2ddd50
2cc5732
 
 
 
 
 
 
1cede7c
2cc5732
 
c2ddd50
2cc5732
 
c2ddd50
2cc5732
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2ddd50
 
 
 
 
 
 
 
 
 
 
 
d58b258
 
2cc5732
 
c2ddd50
d58b258
 
c2ddd50
d58b258
c2ddd50
d58b258
c2ddd50
 
 
d58b258
c2ddd50
 
 
2cc5732
c2ddd50
2cc5732
 
c2ddd50
2cc5732
 
 
 
c2ddd50
2cc5732
 
 
 
 
 
 
 
 
d58b258
2cc5732
c2ddd50
2cc5732
 
 
 
 
 
 
c2ddd50
 
2cc5732
c2ddd50
 
2cc5732
c2ddd50
d58b258
2cc5732
c2ddd50
2cc5732
 
c2ddd50
2cc5732
 
 
 
c2ddd50
 
2cc5732
 
 
c2ddd50
 
 
 
 
 
 
 
2cc5732
c2ddd50
2cc5732
 
29bcdf2
8be899f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import streamlit as st
import tensorflow as tf
import numpy as np
import cv2
from PIL import Image
import io
import torch

# Set page config
st.set_page_config(
    page_title="Stone Detection & Classification",
    page_icon="🪨",
    layout="wide"
)

# Custom CSS to improve the appearance
st.markdown("""
    <style>
    .main {
        padding: 2rem;
    }
    .stButton>button {
        width: 100%;
        margin-top: 1rem;
    }
    .upload-text {
        text-align: center;
        padding: 2rem;
    }
    </style>
    """, unsafe_allow_html=True)

def resize_to_square(image):
    """Resize image to square while maintaining aspect ratio"""
    size = max(image.shape[0], image.shape[1])
    new_img = np.zeros((size, size, 3), dtype=np.uint8)
    
    # Calculate position to paste original image
    x_center = (size - image.shape[1]) // 2
    y_center = (size - image.shape[0]) // 2
    
    # Copy the image into center of result image
    new_img[y_center:y_center+image.shape[0], 
            x_center:x_center+image.shape[1]] = image
    
    return new_img

@st.cache_resource
def load_models():
    """Load both object detection and classification models"""
    # Load object detection model
    device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
    object_detection_model = torch.load("fasterrcnn_resnet50_fpn_090824.pth", map_location=device)
    object_detection_model.to(device)
    object_detection_model.eval()
    
    # Load classification model
    classification_model = tf.keras.models.load_model('custom_model.h5')
    
    return object_detection_model, classification_model, device

def perform_object_detection(image, model, device):
    original_size = image.size
    target_size = (256, 256)
    frame_resized = cv2.resize(np.array(image), dsize=target_size, interpolation=cv2.INTER_AREA)
    frame_rgb = cv2.cvtColor(frame_resized, cv2.COLOR_RGB2BGR).astype(np.float32)  
    frame_rgb /= 255.0
    frame_rgb = frame_rgb.transpose(2, 0, 1)
    frame_rgb = torch.from_numpy(frame_rgb).float().unsqueeze(0).to(device)

    with torch.no_grad():
        outputs = model(frame_rgb)

    boxes = outputs[0]['boxes'].cpu().detach().numpy().astype(np.int32)
    labels = outputs[0]['labels'].cpu().detach().numpy().astype(np.int32)
    scores = outputs[0]['scores'].cpu().detach().numpy()

    result_image = frame_resized.copy()
    cropped_images = []
    detected_boxes = []

    for i in range(len(boxes)):
        if scores[i] >= 0.75:
            x1, y1, x2, y2 = boxes[i]
            if (int(labels[i])-1) == 1 or (int(labels[i])-1) == 0:
                color = (0, 0, 255)
                label_text = 'Flame stone surface'

                # Scale coordinates to original image size
                original_h, original_w = original_size[::-1]
                scale_h, scale_w = original_h / target_size[0], original_w / target_size[1]
                x1_orig, y1_orig = int(x1 * scale_w), int(y1 * scale_h)
                x2_orig, y2_orig = int(x2 * scale_w), int(y2 * scale_h)
                
                # Crop and process detected region
                cropped_image = np.array(image)[y1_orig:y2_orig, x1_orig:x2_orig]
                resized_crop = resize_to_square(cropped_image)
                cropped_images.append(resized_crop)
                detected_boxes.append((x1, y1, x2, y2))

                # Draw bounding box
                cv2.rectangle(result_image, (x1, y1), (x2, y2), color, 3)
                cv2.putText(result_image, label_text, (x1, y1 - 10), 
                           cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)

    return Image.fromarray(result_image), cropped_images, detected_boxes

def preprocess_image(image):
    """Preprocess the image for classification"""
    img_array = np.array(image)
    img_array = cv2.resize(img_array, (256, 256))
    img_array = img_array.astype('float32') / 255.0
    return img_array

def get_top_predictions(prediction, class_names, top_k=5):
    """Get top k predictions with their probabilities"""
    top_indices = prediction.argsort()[0][-top_k:][::-1]
    top_predictions = [
        (class_names[i], float(prediction[0][i]) * 100)
        for i in top_indices
    ]
    return top_predictions

def main():
    st.title("🪨 Stone Detection & Classification")
    st.write("Upload an image to detect and classify stone surfaces")
    
    if 'predictions' not in st.session_state:
        st.session_state.predictions = None
    
    col1, col2 = st.columns(2)
    
    with col1:
        st.subheader("Upload Image")
        uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
        
        if uploaded_file is not None:
            image = Image.open(uploaded_file)
            st.image(image, caption="Uploaded Image", use_column_width=True)

            with st.spinner('Processing image...'):
                try:
                    # Load both models
                    object_detection_model, classification_model, device = load_models()
                    
                    # Perform object detection
                    result_image, cropped_images, detected_boxes = perform_object_detection(
                        image, object_detection_model, device
                    )
                    
                    if not cropped_images:
                        st.warning("No stone surfaces detected in the image")
                        return
                    
                    # Display detection results
                    st.subheader("Detection Results")
                    st.image(result_image, caption="Detected Stone Surfaces", use_column_width=True)
                    
                    # Process each detected region
                    class_names = ['10', '6.5', '7', '7.5', '8', '8.5', '9', '9.2', '9.5', '9.7']
                    all_predictions = []
                    
                    for idx, cropped_image in enumerate(cropped_images):
                        processed_image = preprocess_image(cropped_image)
                        prediction = classification_model.predict(
                            np.expand_dims(processed_image, axis=0)
                        )
                        top_predictions = get_top_predictions(prediction, class_names)
                        all_predictions.append(top_predictions)
                    
                    # Store in session state
                    st.session_state.predictions = all_predictions
                    
                except Exception as e:
                    st.error(f"Error during processing: {str(e)}")
    
    with col2:
        st.subheader("Classification Results")
        if st.session_state.predictions is not None:
            for idx, predictions in enumerate(st.session_state.predictions):
                st.markdown(f"### Region {idx + 1}")
                
                # Display main prediction
                top_class, top_confidence = predictions[0]
                st.markdown(f"**Primary Prediction: Grade {top_class}**")
                st.markdown(f"**Confidence: {top_confidence:.2f}%**")
                st.progress(top_confidence / 100)
                
                # Display all predictions for this region
                st.markdown("**Top 5 Predictions**")
                for class_name, confidence in predictions:
                    col_label, col_bar, col_value = st.columns([2, 6, 2])
                    with col_label:
                        st.write(f"Grade {class_name}")
                    with col_bar:
                        st.progress(confidence / 100)
                    with col_value:
                        st.write(f"{confidence:.2f}%")
                
                st.markdown("---")
        else:
            st.info("Upload an image to see detection and classification results")

if __name__ == "__main__":
    main()