File size: 6,035 Bytes
10e9b7d eccf8e4 7d65c66 3c4371f c43e884 999e116 c43e884 d916609 3db6293 e80aab9 e90a59c ea8d34e e90a59c f5312d4 c43e884 31243f4 49aa693 2ba19e9 e7545b5 d1458e5 31243f4 f5312d4 36ed51a 3c4371f c43e884 eccf8e4 31243f4 7d65c66 31243f4 f5312d4 7d65c66 c43e884 e80aab9 7d65c66 582b41a 31243f4 4d674d3 582b41a 4d674d3 31243f4 c43e884 7d65c66 e80aab9 7d65c66 e80aab9 31243f4 e80aab9 3c4371f e80aab9 31243f4 7d65c66 c43e884 31243f4 e80aab9 31243f4 c43e884 e80aab9 7e4a06b e80aab9 31243f4 9088b99 7d65c66 e80aab9 c43e884 e80aab9 3c4371f c43e884 7d65c66 3c4371f c43e884 582b41a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
import os
import gradio as gr
import requests
import inspect
import pandas as pd
import asyncio
from smolagents import ToolCallingAgent, InferenceClientModel, HfApiModel
from smolagents import DuckDuckGoSearchTool, Tool, CodeAgent
from huggingface_hub import login
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
login(token=os.environ["HUGGINGFACEHUB_API_TOKEN"])
search_tool = DuckDuckGoSearchTool()
async def run_and_submit_all(profile: gr.OAuthProfile | None):
try:
agent = CodeAgent(
tools=[search_tool],
model=InferenceClientModel(model="mistralai/Magistral-Small-2506"),
max_steps=5,
verbosity_level=2
)
except Exception as e:
return f"Error initializing agent: {e}", None
space_id = os.getenv("SPACE_ID")
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
questions_url = f"{DEFAULT_API_URL}/questions"
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
return "Fetched questions list is empty or invalid format.", None
except Exception as e:
return f"Error fetching questions: {e}", None
results_log = []
answers_payload = []
loop = asyncio.get_event_loop()
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
continue
try:
system_prompt = (
"You are a general AI assistant. I will ask you a question. "
"Report your thoughts, and finish your answer with the following template: "
"FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. "
"If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. "
"If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. "
"If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.\n\n"
)
full_prompt = system_prompt + f"Question: {question_text.strip()}"
agent_result = await loop.run_in_executor(None, agent, full_prompt)
# Try to extract final answer depending on type of result
if isinstance(agent_result, dict) and "final_answer" in agent_result:
final_answer = str(agent_result["final_answer"]).strip()
elif isinstance(agent_result, str) and "FINAL ANSWER:" in agent_result:
_, final_answer = agent_result.rsplit("FINAL ANSWER:", 1)
final_answer = final_answer.strip()
else:
final_answer = str(agent_result).strip()
answers_payload.append({
"task_id": task_id,
"model_answer": final_answer
})
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": final_answer
})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": f"AGENT ERROR: {e}"
})
if not answers_payload:
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
username = profile.username if profile else "unknown"
submit_url = f"{DEFAULT_API_URL}/submit"
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
results_df = pd.DataFrame(results_log)
return final_status, results_df
except Exception as e:
status_message = f"Submission Failed: {e}"
results_df = pd.DataFrame(results_log)
return status_message, results_df
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown("""
**Instructions:**
1. Clone this space and define your agent logic.
2. Log in to your Hugging Face account.
3. Click 'Run Evaluation & Submit All Answers'.
---
**Note:**
The run may take time. Async is now used to improve responsiveness.
""")
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID")
if space_host_startup:
print(f"✅ SPACE_HOST: https://{space_host_startup}.hf.space")
if space_id_startup:
print(f"✅ SPACE_ID: https://huggingface.co/spaces/{space_id_startup}")
print("Launching Gradio Interface...")
demo.launch(debug=True, share=False) |