File size: 4,342 Bytes
10e9b7d
 
eccf8e4
7d65c66
3c4371f
c43e884
999e116
c43e884
 
d916609
3db6293
e80aab9
e90a59c
ea8d34e
e90a59c
f5312d4
c43e884
31243f4
49aa693
2ba19e9
e7545b5
d1458e5
 
 
31243f4
 
f5312d4
 
36ed51a
3c4371f
c43e884
eccf8e4
31243f4
7d65c66
31243f4
 
f5312d4
7d65c66
c43e884
e80aab9
7d65c66
 
31243f4
 
 
 
 
 
c43e884
 
7d65c66
 
31243f4
c43e884
31243f4
 
 
 
c43e884
 
7d65c66
e80aab9
7d65c66
e80aab9
 
31243f4
e80aab9
 
3c4371f
 
 
e80aab9
31243f4
 
7d65c66
c43e884
31243f4
 
e80aab9
 
31243f4
c43e884
 
 
 
 
 
 
 
 
e80aab9
7e4a06b
e80aab9
31243f4
9088b99
7d65c66
e80aab9
c43e884
e80aab9
 
3c4371f
 
c43e884
7d65c66
3c4371f
c43e884
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import os
import gradio as gr
import requests
import inspect
import pandas as pd
import asyncio
from smolagents import ToolCallingAgent, InferenceClientModel, HfApiModel
from smolagents import DuckDuckGoSearchTool, Tool, CodeAgent
from huggingface_hub import login

DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

login(token=os.environ["HUGGINGFACEHUB_API_TOKEN"])

search_tool = DuckDuckGoSearchTool()

async def run_and_submit_all(profile: gr.OAuthProfile | None):
    try:
        agent = CodeAgent(
            tools=[search_tool],
            model=InferenceClientModel(model="mistralai/Magistral-Small-2506"),
            max_steps=5,
            verbosity_level=2        
        )
    except Exception as e:
        return f"Error initializing agent: {e}", None

    space_id = os.getenv("SPACE_ID")
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"

    questions_url = f"{DEFAULT_API_URL}/questions"
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
            return "Fetched questions list is empty or invalid format.", None
    except Exception as e:
        return f"Error fetching questions: {e}", None

    results_log = []
    answers_payload = []
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            continue
        try:
            loop = asyncio.get_event_loop()
            submitted_answer = await loop.run_in_executor(None, agent, question_text)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    username = profile.username if profile else "unknown"
    submit_url = f"{DEFAULT_API_URL}/submit"
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except Exception as e:
        status_message = f"Submission Failed: {e}"
        results_df = pd.DataFrame(results_log)
        return status_message, results_df

with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown("""
    **Instructions:**
    1. Clone this space and define your agent logic.
    2. Log in to your Hugging Face account.
    3. Click 'Run Evaluation & Submit All Answers'.
    ---
    **Note:**
    The run may take time. Async is now used to improve responsiveness.
    """)

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")
    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID")

    if space_host_startup:
        print(f"✅ SPACE_HOST: https://{space_host_startup}.hf.space")
    if space_id_startup:
        print(f"✅ SPACE_ID: https://huggingface.co/spaces/{space_id_startup}")

    print("Launching Gradio Interface...")
    demo.launch(debug=True, share=False)