File size: 6,175 Bytes
10e9b7d
 
eccf8e4
3c4371f
c43e884
d646f48
 
c43e884
d646f48
d916609
d646f48
3db6293
d646f48
 
e80aab9
d646f48
e90a59c
ea8d34e
d646f48
e90a59c
f5312d4
d646f48
 
c43e884
d646f48
31243f4
49aa693
2ba19e9
e7545b5
d1458e5
d646f48
d1458e5
31243f4
 
f5312d4
d646f48
 
36ed51a
3c4371f
d646f48
eccf8e4
d646f48
7d65c66
31243f4
 
d646f48
7d65c66
c43e884
e80aab9
d646f48
7d65c66
d646f48
582b41a
 
31243f4
 
d646f48
 
31243f4
4d674d3
d646f48
 
 
 
 
 
 
 
 
 
 
582b41a
d646f48
 
 
 
 
582b41a
 
791c8cd
d646f48
 
 
 
 
 
 
 
 
791c8cd
 
d646f48
582b41a
 
 
d646f48
 
 
791c8cd
d646f48
 
98f0864
d646f48
 
582b41a
d646f48
 
31243f4
d646f48
c43e884
2135e75
 
 
d646f48
2135e75
d646f48
 
 
e80aab9
d646f48
e80aab9
 
d646f48
31243f4
d646f48
e80aab9
d646f48
 
 
e80aab9
d646f48
 
7d65c66
d646f48
e80aab9
d646f48
 
e80aab9
d646f48
c43e884
 
d646f48
 
 
c43e884
e80aab9
7e4a06b
31243f4
d646f48
 
e80aab9
c43e884
e80aab9
7d65c66
d646f48
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import os
import gradio as gr
import requests
import pandas as pd
import asyncio
import json
import concurrent.futures
from huggingface_hub import login
from smolagents import CodeAgent, InferenceClientModel, DuckDuckGoSearchTool

# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
QUESTIONS_URL = f"{DEFAULT_API_URL}/questions"
SUBMIT_URL = f"{DEFAULT_API_URL}/submit"

# --- Hugging Face Login ---
login(token=os.environ["HUGGINGFACEHUB_API_TOKEN"])

# --- Define Tools ---
search_tool = DuckDuckGoSearchTool()


# --- Main Function ---
async def run_and_submit_all(profile: gr.OAuthProfile | None):
    # Initialize Agent
    try:
        agent = CodeAgent(
            tools=[search_tool],
            model=InferenceClientModel(model="mistralai/Magistral-Small-2506"),
            max_steps=5,
            verbosity_level=2
        )
    except Exception as e:
        return f"Error initializing agent: {e}", None

    # Get Space ID for agent_code link
    space_id = os.getenv("SPACE_ID", "unknown")
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"

    # Fetch questions
    try:
        response = requests.get(QUESTIONS_URL, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
            return "No questions received.", None
    except Exception as e:
        return f"Error fetching questions: {e}", None

    # Prepare results
    answers_payload = []
    results_log = []
    loop = asyncio.get_event_loop()

    for item in questions_data:
        task_id = item.get("task_id")
        question = item.get("question")
        if not task_id or not question:
            continue

        system_prompt = (
            "You are a general AI assistant. I will ask you a question. "
            "Report your thoughts, and finish your answer with the following template: "
            "FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. "
            "If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. "
            "If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. "
            "If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.\n\n"
        )
        prompt = system_prompt + f"Question: {question.strip()}"

        # Run agent with timeout
        try:
            with concurrent.futures.ThreadPoolExecutor() as executor:
                future = executor.submit(agent, prompt)
                agent_result = await loop.run_in_executor(None, future.result, 60)  # timeout=60s

            # Clean model output
            if isinstance(agent_result, dict) and "final_answer" in agent_result:
                final_answer = str(agent_result["final_answer"]).strip()
            elif isinstance(agent_result, str):
                response_text = agent_result.strip()

                # Remove known boilerplate
                if "Here is the final answer from your managed agent" in response_text:
                    response_text = response_text.split(":", 1)[-1].strip()

                # Extract final answer
                if "FINAL ANSWER:" in response_text:
                    _, final_answer = response_text.rsplit("FINAL ANSWER:", 1)
                    final_answer = final_answer.strip()
                else:
                    final_answer = response_text
            else:
                final_answer = str(agent_result).strip()

        except Exception as e:
            print(f"[ERROR] Task {task_id} failed: {e}")
            final_answer = f"AGENT ERROR: {e}"

        answers_payload.append({"task_id": task_id, "model_answer": final_answer})
        results_log.append({"Task ID": task_id, "Question": question, "Submitted Answer": final_answer})

    # Clean invalid entries
    valid_answers = [a for a in answers_payload if isinstance(a["task_id"], str) and isinstance(a["model_answer"], str)]

    if not valid_answers:
        return "Agent produced no valid answers.", pd.DataFrame(results_log)

    # Prepare submission
    username = profile.username if profile else "unknown"
    submission_data = {
        "username": username.strip(),
        "agent_code": agent_code,
        "answers": valid_answers
    }

    print("[DEBUG] Submission Payload:\n", json.dumps(submission_data, indent=2))

    try:
        response = requests.post(SUBMIT_URL, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()

        final_status = (
            f"✅ Submission Successful\n"
            f"User: {result_data.get('username')}\n"
            f"Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count')}/{result_data.get('total_attempted')})\n"
            f"Message: {result_data.get('message', 'No message.')}"
        )
        return final_status, pd.DataFrame(results_log)

    except Exception as e:
        return f"Submission Failed: {e}", pd.DataFrame(results_log)


# --- Gradio UI ---
with gr.Blocks() as demo:
    gr.Markdown("# Agent Evaluation Interface")
    gr.Markdown("""
    **Instructions:**
    1. Clone and customize the agent logic.
    2. Log in to Hugging Face.
    3. Click "Run Evaluation" to test and submit your answers.
    """)

    gr.LoginButton()
    run_button = gr.Button("Run Evaluation & Submit All Answers")
    status_output = gr.Textbox(label="Status", lines=5, interactive=False)
    results_table = gr.DataFrame(label="Agent Answers", wrap=True)

    run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])


# --- App Launch ---
if __name__ == "__main__":
    print("\n--- Launching Gradio Space ---")
    print(f"✅ SPACE_HOST: {os.getenv('SPACE_HOST')}")
    print(f"✅ SPACE_ID: {os.getenv('SPACE_ID')}")
    demo.launch(debug=True, share=False)