File size: 6,175 Bytes
10e9b7d eccf8e4 3c4371f c43e884 d646f48 c43e884 d646f48 d916609 d646f48 3db6293 d646f48 e80aab9 d646f48 e90a59c ea8d34e d646f48 e90a59c f5312d4 d646f48 c43e884 d646f48 31243f4 49aa693 2ba19e9 e7545b5 d1458e5 d646f48 d1458e5 31243f4 f5312d4 d646f48 36ed51a 3c4371f d646f48 eccf8e4 d646f48 7d65c66 31243f4 d646f48 7d65c66 c43e884 e80aab9 d646f48 7d65c66 d646f48 582b41a 31243f4 d646f48 31243f4 4d674d3 d646f48 582b41a d646f48 582b41a 791c8cd d646f48 791c8cd d646f48 582b41a d646f48 791c8cd d646f48 98f0864 d646f48 582b41a d646f48 31243f4 d646f48 c43e884 2135e75 d646f48 2135e75 d646f48 e80aab9 d646f48 e80aab9 d646f48 31243f4 d646f48 e80aab9 d646f48 e80aab9 d646f48 7d65c66 d646f48 e80aab9 d646f48 e80aab9 d646f48 c43e884 d646f48 c43e884 e80aab9 7e4a06b 31243f4 d646f48 e80aab9 c43e884 e80aab9 7d65c66 d646f48 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
import os
import gradio as gr
import requests
import pandas as pd
import asyncio
import json
import concurrent.futures
from huggingface_hub import login
from smolagents import CodeAgent, InferenceClientModel, DuckDuckGoSearchTool
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
QUESTIONS_URL = f"{DEFAULT_API_URL}/questions"
SUBMIT_URL = f"{DEFAULT_API_URL}/submit"
# --- Hugging Face Login ---
login(token=os.environ["HUGGINGFACEHUB_API_TOKEN"])
# --- Define Tools ---
search_tool = DuckDuckGoSearchTool()
# --- Main Function ---
async def run_and_submit_all(profile: gr.OAuthProfile | None):
# Initialize Agent
try:
agent = CodeAgent(
tools=[search_tool],
model=InferenceClientModel(model="mistralai/Magistral-Small-2506"),
max_steps=5,
verbosity_level=2
)
except Exception as e:
return f"Error initializing agent: {e}", None
# Get Space ID for agent_code link
space_id = os.getenv("SPACE_ID", "unknown")
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
# Fetch questions
try:
response = requests.get(QUESTIONS_URL, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
return "No questions received.", None
except Exception as e:
return f"Error fetching questions: {e}", None
# Prepare results
answers_payload = []
results_log = []
loop = asyncio.get_event_loop()
for item in questions_data:
task_id = item.get("task_id")
question = item.get("question")
if not task_id or not question:
continue
system_prompt = (
"You are a general AI assistant. I will ask you a question. "
"Report your thoughts, and finish your answer with the following template: "
"FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. "
"If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. "
"If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. "
"If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.\n\n"
)
prompt = system_prompt + f"Question: {question.strip()}"
# Run agent with timeout
try:
with concurrent.futures.ThreadPoolExecutor() as executor:
future = executor.submit(agent, prompt)
agent_result = await loop.run_in_executor(None, future.result, 60) # timeout=60s
# Clean model output
if isinstance(agent_result, dict) and "final_answer" in agent_result:
final_answer = str(agent_result["final_answer"]).strip()
elif isinstance(agent_result, str):
response_text = agent_result.strip()
# Remove known boilerplate
if "Here is the final answer from your managed agent" in response_text:
response_text = response_text.split(":", 1)[-1].strip()
# Extract final answer
if "FINAL ANSWER:" in response_text:
_, final_answer = response_text.rsplit("FINAL ANSWER:", 1)
final_answer = final_answer.strip()
else:
final_answer = response_text
else:
final_answer = str(agent_result).strip()
except Exception as e:
print(f"[ERROR] Task {task_id} failed: {e}")
final_answer = f"AGENT ERROR: {e}"
answers_payload.append({"task_id": task_id, "model_answer": final_answer})
results_log.append({"Task ID": task_id, "Question": question, "Submitted Answer": final_answer})
# Clean invalid entries
valid_answers = [a for a in answers_payload if isinstance(a["task_id"], str) and isinstance(a["model_answer"], str)]
if not valid_answers:
return "Agent produced no valid answers.", pd.DataFrame(results_log)
# Prepare submission
username = profile.username if profile else "unknown"
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": valid_answers
}
print("[DEBUG] Submission Payload:\n", json.dumps(submission_data, indent=2))
try:
response = requests.post(SUBMIT_URL, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"✅ Submission Successful\n"
f"User: {result_data.get('username')}\n"
f"Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count')}/{result_data.get('total_attempted')})\n"
f"Message: {result_data.get('message', 'No message.')}"
)
return final_status, pd.DataFrame(results_log)
except Exception as e:
return f"Submission Failed: {e}", pd.DataFrame(results_log)
# --- Gradio UI ---
with gr.Blocks() as demo:
gr.Markdown("# Agent Evaluation Interface")
gr.Markdown("""
**Instructions:**
1. Clone and customize the agent logic.
2. Log in to Hugging Face.
3. Click "Run Evaluation" to test and submit your answers.
""")
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Status", lines=5, interactive=False)
results_table = gr.DataFrame(label="Agent Answers", wrap=True)
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
# --- App Launch ---
if __name__ == "__main__":
print("\n--- Launching Gradio Space ---")
print(f"✅ SPACE_HOST: {os.getenv('SPACE_HOST')}")
print(f"✅ SPACE_ID: {os.getenv('SPACE_ID')}")
demo.launch(debug=True, share=False)
|