Sonu313131's picture
Update app.py
d646f48 verified
raw
history blame
6.18 kB
import os
import gradio as gr
import requests
import pandas as pd
import asyncio
import json
import concurrent.futures
from huggingface_hub import login
from smolagents import CodeAgent, InferenceClientModel, DuckDuckGoSearchTool
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
QUESTIONS_URL = f"{DEFAULT_API_URL}/questions"
SUBMIT_URL = f"{DEFAULT_API_URL}/submit"
# --- Hugging Face Login ---
login(token=os.environ["HUGGINGFACEHUB_API_TOKEN"])
# --- Define Tools ---
search_tool = DuckDuckGoSearchTool()
# --- Main Function ---
async def run_and_submit_all(profile: gr.OAuthProfile | None):
# Initialize Agent
try:
agent = CodeAgent(
tools=[search_tool],
model=InferenceClientModel(model="mistralai/Magistral-Small-2506"),
max_steps=5,
verbosity_level=2
)
except Exception as e:
return f"Error initializing agent: {e}", None
# Get Space ID for agent_code link
space_id = os.getenv("SPACE_ID", "unknown")
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
# Fetch questions
try:
response = requests.get(QUESTIONS_URL, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
return "No questions received.", None
except Exception as e:
return f"Error fetching questions: {e}", None
# Prepare results
answers_payload = []
results_log = []
loop = asyncio.get_event_loop()
for item in questions_data:
task_id = item.get("task_id")
question = item.get("question")
if not task_id or not question:
continue
system_prompt = (
"You are a general AI assistant. I will ask you a question. "
"Report your thoughts, and finish your answer with the following template: "
"FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. "
"If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. "
"If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. "
"If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.\n\n"
)
prompt = system_prompt + f"Question: {question.strip()}"
# Run agent with timeout
try:
with concurrent.futures.ThreadPoolExecutor() as executor:
future = executor.submit(agent, prompt)
agent_result = await loop.run_in_executor(None, future.result, 60) # timeout=60s
# Clean model output
if isinstance(agent_result, dict) and "final_answer" in agent_result:
final_answer = str(agent_result["final_answer"]).strip()
elif isinstance(agent_result, str):
response_text = agent_result.strip()
# Remove known boilerplate
if "Here is the final answer from your managed agent" in response_text:
response_text = response_text.split(":", 1)[-1].strip()
# Extract final answer
if "FINAL ANSWER:" in response_text:
_, final_answer = response_text.rsplit("FINAL ANSWER:", 1)
final_answer = final_answer.strip()
else:
final_answer = response_text
else:
final_answer = str(agent_result).strip()
except Exception as e:
print(f"[ERROR] Task {task_id} failed: {e}")
final_answer = f"AGENT ERROR: {e}"
answers_payload.append({"task_id": task_id, "model_answer": final_answer})
results_log.append({"Task ID": task_id, "Question": question, "Submitted Answer": final_answer})
# Clean invalid entries
valid_answers = [a for a in answers_payload if isinstance(a["task_id"], str) and isinstance(a["model_answer"], str)]
if not valid_answers:
return "Agent produced no valid answers.", pd.DataFrame(results_log)
# Prepare submission
username = profile.username if profile else "unknown"
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": valid_answers
}
print("[DEBUG] Submission Payload:\n", json.dumps(submission_data, indent=2))
try:
response = requests.post(SUBMIT_URL, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"✅ Submission Successful\n"
f"User: {result_data.get('username')}\n"
f"Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count')}/{result_data.get('total_attempted')})\n"
f"Message: {result_data.get('message', 'No message.')}"
)
return final_status, pd.DataFrame(results_log)
except Exception as e:
return f"Submission Failed: {e}", pd.DataFrame(results_log)
# --- Gradio UI ---
with gr.Blocks() as demo:
gr.Markdown("# Agent Evaluation Interface")
gr.Markdown("""
**Instructions:**
1. Clone and customize the agent logic.
2. Log in to Hugging Face.
3. Click "Run Evaluation" to test and submit your answers.
""")
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Status", lines=5, interactive=False)
results_table = gr.DataFrame(label="Agent Answers", wrap=True)
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
# --- App Launch ---
if __name__ == "__main__":
print("\n--- Launching Gradio Space ---")
print(f"✅ SPACE_HOST: {os.getenv('SPACE_HOST')}")
print(f"✅ SPACE_ID: {os.getenv('SPACE_ID')}")
demo.launch(debug=True, share=False)