File size: 19,872 Bytes
c8f5641 3b844a5 c0490dd d8c7b69 68c48e6 3b844a5 68c48e6 c0490dd fcb0cff c0490dd 68c48e6 fcb0cff 3b844a5 fcb0cff 68c48e6 3b844a5 fcb0cff c0490dd 68c48e6 c0490dd 68c48e6 c0490dd fcb0cff baa503f 68c48e6 baa503f 68c48e6 6a500ed 3b844a5 c8f5641 f81b3d1 e5efe2c c0490dd 68c48e6 6a500ed c8f5641 68c48e6 6a500ed c8f5641 68c48e6 c0490dd 3b844a5 fcb0cff c0490dd bfd8827 fcb0cff c0490dd fcb0cff c0490dd bc47113 c0490dd bfd8827 c0490dd fcb0cff c0490dd fcb0cff 3b844a5 c0490dd 3b844a5 c8f5641 3b844a5 fcb0cff c0490dd fcb0cff c0490dd fcb0cff c0490dd fcb0cff 3b844a5 c0490dd bc47113 c0490dd fcb0cff bfd8827 fcb0cff 3b844a5 fcb0cff 3b844a5 fcb0cff 3b844a5 bfd8827 3b844a5 c8f5641 bd26dca c0490dd 68c48e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 |
# import logging
# import random
# import warnings
# import gradio as gr
# import os
# import shutil
# import subprocess
# import spaces
# import torch
# import numpy as np
# from diffusers import FluxControlNetModel
# from diffusers.pipelines import FluxControlNetPipeline
# from PIL import Image
# from huggingface_hub import snapshot_download, login
# import io
# import base64
# from flask import Flask, request, jsonify
# from concurrent.futures import ThreadPoolExecutor
# from flask_cors import CORS
# import threading
# # Configure logging
# logging.basicConfig(level=logging.INFO)
# logger = logging.getLogger(__name__)
# app = Flask(__name__)
# CORS(app)
# # Function to check disk usage
# def check_disk_space():
# result = subprocess.run(['df', '-h'], capture_output=True, text=True)
# logger.info("Disk space usage:\n%s", result.stdout)
# # Function to clear Hugging Face cache
# def clear_huggingface_cache():
# cache_dir = os.path.expanduser('~/.cache/huggingface')
# if os.path.exists(cache_dir):
# shutil.rmtree(cache_dir) # Removes the entire cache directory
# logger.info("Cleared Hugging Face cache at: %s", cache_dir)
# else:
# logger.info("No Hugging Face cache found.")
# # Check disk space
# check_disk_space()
# # Clear Hugging Face cache
# clear_huggingface_cache()
# # Add config to store base64 images
# app.config['image_outputs'] = {}
# # ThreadPoolExecutor for managing image processing threads
# executor = ThreadPoolExecutor()
# # Determine the device (GPU or CPU)
# if torch.cuda.is_available():
# device = "cuda"
# logger.info("CUDA is available. Using GPU.")
# else:
# device = "cpu"
# logger.info("CUDA is not available. Using CPU.")
# # Load model from Huggingface Hub
# huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
# if huggingface_token:
# login(token=huggingface_token)
# logger.info("Hugging Face token found and logged in.")
# else:
# logger.warning("Hugging Face token not found in environment variables.")
# logger.info("Hugging Face token: %s", huggingface_token)
# # Download model using snapshot_download
# model_path = snapshot_download(
# repo_id="black-forest-labs/FLUX.1-dev",
# repo_type="model",
# ignore_patterns=["*.md", "*..gitattributes"],
# local_dir="FLUX.1-dev",
# token=huggingface_token)
# logger.info("Model downloaded to: %s", model_path)
# # Load pipeline
# logger.info('Loading ControlNet model.')
# controlnet = FluxControlNetModel.from_pretrained(
# "jasperai/Flux.1-dev-Controlnet-Upscaler", torch_dtype=torch.bfloat16
# ).to(device)
# logger.info("ControlNet model loaded successfully.")
# logger.info('Loading pipeline.')
# pipe = FluxControlNetPipeline.from_pretrained(
# model_path, controlnet=controlnet, torch_dtype=torch.bfloat16
# ).to(device)
# logger.info("Pipeline loaded successfully.")
# MAX_SEED = 1000000
# MAX_PIXEL_BUDGET = 1024 * 1024
# @spaces.GPU
# def process_input(input_image, upscale_factor):
# w, h = input_image.size
# aspect_ratio = w / h
# was_resized = False
# # Resize if input size exceeds the maximum pixel budget
# if w * h * upscale_factor**2 > MAX_PIXEL_BUDGET:
# warnings.warn(f"Requested output image is too large. Resizing to fit within pixel budget.")
# input_image = input_image.resize(
# (
# int(aspect_ratio * MAX_PIXEL_BUDGET**0.5 // upscale_factor),
# int(MAX_PIXEL_BUDGET**0.5 // aspect_ratio // upscale_factor),
# )
# )
# was_resized = True
# # Adjust dimensions to be a multiple of 8
# w, h = input_image.size
# w = w - w % 8
# h = h - h % 8
# return input_image.resize((w, h)), was_resized
# @spaces.GPU
# def run_inference(process_id, input_image, upscale_factor, seed, num_inference_steps, controlnet_conditioning_scale):
# logger.info("Processing inference for process_id: %s", process_id)
# input_image, was_resized = process_input(input_image, upscale_factor)
# # Rescale image for ControlNet processing
# w, h = input_image.size
# control_image = input_image.resize((w * upscale_factor, h * upscale_factor))
# # Set the random generator for inference
# generator = torch.Generator().manual_seed(seed)
# # Perform inference using the pipeline
# logger.info("Running pipeline for process_id: %s", process_id)
# image = pipe(
# prompt="",
# control_image=control_image,
# controlnet_conditioning_scale=controlnet_conditioning_scale,
# num_inference_steps=num_inference_steps,
# guidance_scale=3.5,
# height=control_image.size[1],
# width=control_image.size[0],
# generator=generator,
# ).images[0]
# # Resize output image back to the original dimensions if needed
# if was_resized:
# original_size = (input_image.width * upscale_factor, input_image.height * upscale_factor)
# image = image.resize(original_size)
# # Convert the output image to base64
# buffered = io.BytesIO()
# image.save(buffered, format="JPEG")
# image_base64 = base64.b64encode(buffered.getvalue()).decode("utf-8")
# # Store the result in the shared dictionary
# app.config['image_outputs'][process_id] = image_base64
# logger.info("Inference completed for process_id: %s", process_id)
# @app.route('/infer', methods=['POST'])
# def infer():
# # Check if the file was provided in the form-data
# if 'input_image' not in request.files:
# logger.error("No image file provided in request.")
# return jsonify({
# "status": "error",
# "message": "No input_image file provided"
# }), 400
# # Get the uploaded image file from the request
# file = request.files['input_image']
# # Check if a file was uploaded
# if file.filename == '':
# logger.error("No selected file in form-data.")
# return jsonify({
# "status": "error",
# "message": "No selected file"
# }), 400
# # Convert the image to Base64 for internal processing
# input_image = Image.open(file)
# buffered = io.BytesIO()
# input_image.save(buffered, format="JPEG")
# # Retrieve additional parameters from the request (if any)
# seed = request.form.get("seed", 42, type=int)
# randomize_seed = request.form.get("randomize_seed", 'true').lower() == 'true'
# num_inference_steps = request.form.get("num_inference_steps", 28, type=int)
# upscale_factor = request.form.get("upscale_factor", 4, type=int)
# controlnet_conditioning_scale = request.form.get("controlnet_conditioning_scale", 0.6, type=float)
# # Randomize seed if specified
# if randomize_seed:
# seed = random.randint(0, MAX_SEED)
# logger.info("Seed randomized to: %d", seed)
# # Create a unique process ID for this request
# process_id = str(random.randint(1000, 9999))
# logger.info("Process started with process_id: %s", process_id)
# # Set the status to 'in_progress'
# app.config['image_outputs'][process_id] = None
# # Run the inference in a separate thread
# executor.submit(run_inference, process_id, input_image, upscale_factor, seed, num_inference_steps, controlnet_conditioning_scale)
# # Return the process ID
# return jsonify({
# "process_id": process_id,
# "message": "Processing started"
# })
# # Modify status endpoint to receive process_id in request body
# @app.route('/status', methods=['GET'])
# def status():
# # Get the process_id from the query parameters
# process_id = request.args.get('process_id')
# # Check if process_id was provided
# if not process_id:
# logger.error("Process ID not provided in request.")
# return jsonify({
# "status": "error",
# "message": "Process ID is required"
# }), 400
# # Check if the process_id exists in the dictionary
# if process_id not in app.config['image_outputs']:
# logger.error("Invalid process ID: %s", process_id)
# return jsonify({
# "status": "error",
# "message": "Invalid process ID"
# }), 404
# # Check the status of the image processing
# image_base64 = app.config['image_outputs'][process_id]
# if image_base64 is None:
# logger.info("Process ID %s is still in progress.", process_id)
# return jsonify({
# "status": "in_progress"
# })
# else:
# logger.info("Process ID %s completed successfully.", process_id)
# return jsonify({
# "status": "completed",
# "output_image": image_base64
# })
# if __name__ == '__main__':
# app.run(debug=True,host='0.0.0.0')
# import logging
# import random
# import warnings
# import gradio as gr
# import os
# import shutil
# import subprocess
# import torch
# import numpy as np
# from diffusers import FluxControlNetModel
# from diffusers.pipelines import FluxControlNetPipeline
# from PIL import Image
# from huggingface_hub import snapshot_download, login
# import io
# import base64
# import threading
# # Configure logging
# logging.basicConfig(level=logging.INFO)
# logger = logging.getLogger(__name__)
# # Function to check disk usage
# def check_disk_space():
# result = subprocess.run(['df', '-h'], capture_output=True, text=True)
# logger.info("Disk space usage:\n%s", result.stdout)
# # Function to clear Hugging Face cache
# def clear_huggingface_cache():
# cache_dir = os.path.expanduser('~/.cache/huggingface')
# if os.path.exists(cache_dir):
# shutil.rmtree(cache_dir) # Removes the entire cache directory
# logger.info("Cleared Hugging Face cache at: %s", cache_dir)
# else:
# logger.info("No Hugging Face cache found.")
# # Check disk space
# check_disk_space()
# # Clear Hugging Face cache
# clear_huggingface_cache()
# # Add config to store base64 images
# image_outputs = {}
# # Determine the device (GPU or CPU)
# if torch.cuda.is_available():
# device = "cuda"
# logger.info("CUDA is available. Using GPU.")
# else:
# device = "cpu"
# logger.info("CUDA is not available. Using CPU.")
# # Load model from Huggingface Hub
# huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
# if huggingface_token:
# login(token=huggingface_token)
# logger.info("Hugging Face token found and logged in.")
# else:
# logger.warning("Hugging Face token not found in environment variables.")
# # Download model using snapshot_download
# model_path = snapshot_download(
# repo_id="black-forest-labs/FLUX.1-dev",
# repo_type="model",
# ignore_patterns=["*.md", "*..gitattributes"],
# local_dir="FLUX.1-dev",
# token=huggingface_token
# )
# logger.info("Model downloaded to: %s", model_path)
# # Load pipeline
# logger.info('Loading ControlNet model.')
# controlnet = FluxControlNetModel.from_pretrained(
# "jasperai/Flux.1-dev-Controlnet-Upscaler", torch_dtype=torch.bfloat16
# ).to(device)
# logger.info("ControlNet model loaded successfully.")
# logger.info('Loading pipeline.')
# pipe = FluxControlNetPipeline.from_pretrained(
# model_path, controlnet=controlnet, torch_dtype=torch.bfloat16
# ).to(device)
# logger.info("Pipeline loaded successfully.")
# MAX_SEED = 1000000
# MAX_PIXEL_BUDGET = 1024 * 1024
# def process_input(input_image, upscale_factor):
# w, h = input_image.size
# aspect_ratio = w / h
# was_resized = False
# # Resize if input size exceeds the maximum pixel budget
# if w * h * upscale_factor**2 > MAX_PIXEL_BUDGET:
# warnings.warn(f"Requested output image is too large. Resizing to fit within pixel budget.")
# input_image = input_image.resize(
# (
# int(aspect_ratio * MAX_PIXEL_BUDGET**0.5 // upscale_factor),
# int(MAX_PIXEL_BUDGET**0.5 // aspect_ratio // upscale_factor),
# )
# )
# was_resized = True
# # Adjust dimensions to be a multiple of 8
# w, h = input_image.size
# w = w - w % 8
# h = h - h % 8
# return input_image.resize((w, h)), was_resized
# def run_inference(input_image, upscale_factor, seed, num_inference_steps, controlnet_conditioning_scale):
# logger.info("Running inference")
# input_image, was_resized = process_input(input_image, upscale_factor)
# # Rescale image for ControlNet processing
# w, h = input_image.size
# control_image = input_image.resize((w * upscale_factor, h * upscale_factor))
# # Set the random generator for inference
# generator = torch.Generator().manual_seed(seed)
# # Perform inference using the pipeline
# logger.info("Running pipeline")
# image = pipe(
# prompt="",
# control_image=control_image,
# controlnet_conditioning_scale=controlnet_conditioning_scale,
# num_inference_steps=num_inference_steps,
# guidance_scale=3.5,
# height=control_image.size[1],
# width=control_image.size[0],
# generator=generator,
# ).images[0]
# # Resize output image back to the original dimensions if needed
# if was_resized:
# original_size = (input_image.width * upscale_factor, input_image.height * upscale_factor)
# image = image.resize(original_size)
# # Convert the output image to base64
# buffered = io.BytesIO()
# image.save(buffered, format="JPEG")
# image_base64 = base64.b64encode(buffered.getvalue()).decode("utf-8")
# logger.info("Inference completed")
# return image_base64
# # Define Gradio interface
# def gradio_interface(input_image, upscale_factor=4, seed=42, num_inference_steps=28, controlnet_conditioning_scale=0.6):
# if randomize_seed:
# seed = random.randint(0, MAX_SEED)
# logger.info("Seed randomized to: %d", seed)
# # Run inference
# output_image_base64 = run_inference(input_image, upscale_factor, seed, num_inference_steps, controlnet_conditioning_scale)
# return Image.open(io.BytesIO(base64.b64decode(output_image_base64)))
# # Create Gradio interface
# iface = gr.Interface(
# fn=gradio_interface,
# inputs=[
# gr.Image(type="pil", label="Input Image"),
# gr.Slider(min=1, max=8, step=1, label="Upscale Factor"),
# gr.Slider(min=0, max=MAX_SEED, step=1, label="Seed"),
# gr.Slider(min=1, max=100, step=1, label="Inference Steps"),
# gr.Slider(min=0.0, max=1.0, step=0.1, label="ControlNet Conditioning Scale")
# ],
# outputs=gr.Image(label="Output Image"),
# title="ControlNet Image Upscaling",
# description="Upload an image to upscale using the ControlNet model."
# )
# # Launch Gradio app
# if __name__ == '__main__':
# iface.launch()
import logging
import random
import warnings
import gradio as gr
import os
import shutil
import spaces
import subprocess
import torch
import numpy as np
from diffusers import FluxControlNetModel
from diffusers.pipelines import FluxControlNetPipeline
from PIL import Image
from huggingface_hub import snapshot_download, login
import io
import base64
from concurrent.futures import ThreadPoolExecutor
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# ThreadPoolExecutor for managing image processing threads
executor = ThreadPoolExecutor()
# Determine the device (GPU or CPU)
if torch.cuda.is_available():
device = "cuda"
logger.info("CUDA is available. Using GPU.")
else:
device = "cpu"
logger.info("CUDA is not available. Using CPU.")
# Load model from Huggingface Hub
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
if huggingface_token:
login(token=huggingface_token)
logger.info("Hugging Face token found and logged in.")
else:
logger.warning("Hugging Face token not found in environment variables.")
# Download model using snapshot_download
model_path = snapshot_download(
repo_id="black-forest-labs/FLUX.1-dev",
repo_type="model",
ignore_patterns=["*.md", "*..gitattributes"],
local_dir="FLUX.1-dev",
token=huggingface_token
)
logger.info("Model downloaded to: %s", model_path)
# Load pipeline
logger.info('Loading ControlNet model.')
controlnet = FluxControlNetModel.from_pretrained(
"jasperai/Flux.1-dev-Controlnet-Upscaler", torch_dtype=torch.bfloat16
).to(device)
logger.info("ControlNet model loaded successfully.")
logger.info('Loading pipeline.')
pipe = FluxControlNetPipeline.from_pretrained(
model_path, controlnet=controlnet, torch_dtype=torch.bfloat16
).to(device)
logger.info("Pipeline loaded successfully.")
MAX_SEED = 1000000
MAX_PIXEL_BUDGET = 1024 * 1024
@spaces.GPU
def process_input(input_image, upscale_factor):
w, h = input_image.size
aspect_ratio = w / h
was_resized = False
# Resize if input size exceeds the maximum pixel budget
if w * h * upscale_factor**2 > MAX_PIXEL_BUDGET:
warnings.warn(f"Requested output image is too large. Resizing to fit within pixel budget.")
input_image = input_image.resize(
(
int(aspect_ratio * MAX_PIXEL_BUDGET**0.5 // upscale_factor),
int(MAX_PIXEL_BUDGET**0.5 // aspect_ratio // upscale_factor),
)
)
was_resized = True
# Adjust dimensions to be a multiple of 8
w, h = input_image.size
w = w - w % 8
h = h - h % 8
return input_image.resize((w, h)), was_resized
@spaces.GPU
def run_inference(input_image, upscale_factor, seed, num_inference_steps, controlnet_conditioning_scale):
logger.info("Processing inference.")
input_image, was_resized = process_input(input_image, upscale_factor)
# Rescale image for ControlNet processing
w, h = input_image.size
control_image = input_image.resize((w * upscale_factor, h * upscale_factor))
# Set the random generator for inference
generator = torch.Generator().manual_seed(seed)
# Perform inference using the pipeline
logger.info("Running pipeline.")
image = pipe(
prompt="",
control_image=control_image,
controlnet_conditioning_scale=controlnet_conditioning_scale,
num_inference_steps=num_inference_steps,
guidance_scale=3.5,
height=control_image.size[1],
width=control_image.size[0],
generator=generator,
).images[0]
# Resize output image back to the original dimensions if needed
if was_resized:
original_size = (input_image.width * upscale_factor, input_image.height * upscale_factor)
image = image.resize(original_size)
return image
def run_gradio_app():
with gr.Blocks() as app:
gr.Markdown("## Image Upscaler using ControlNet")
# Define the inputs and outputs
input_image = gr.Image(type="pil", label="Input Image")
upscale_factor = gr.Slider(minimum=1, maximum=8, step=1, label="Upscale Factor")
seed = gr.Slider(minimum=0, maximum=100, step=1, label="Seed")
num_inference_steps = gr.Slider(minimum=1, maximum=100, step=1, label="Inference Steps")
controlnet_conditioning_scale = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, label="ControlNet Conditioning Scale")
output_image = gr.Image(type="pil", label="Output Image")
# Create a button to trigger the processing
submit_button = gr.Button("Upscale Image")
# Define the function to run when the button is clicked
submit_button.click(run_inference,
inputs=[input_image, upscale_factor, seed, num_inference_steps, controlnet_conditioning_scale],
outputs=output_image)
app.launch()
if __name__ == "__main__":
run_gradio_app()
|