Steven10429's picture
llama.cpp
61b850a
#include "common.cuh"
#include "cross-entropy-loss.cuh"
#include "sum.cuh"
#include <cmath>
#include <cstdint>
template <bool use_shared>
static __global__ void cross_entropy_loss_f32(
const float * __restrict__ logits, const float * __restrict__ labels, float * __restrict__ dst, const int nclasses, const int k) {
extern __shared__ float tmp[];
logits += int64_t(blockIdx.x)*nclasses;
labels += int64_t(blockIdx.x)*nclasses;
// Find maximum for softmax:
float max_logit = -INFINITY;
for (int i = threadIdx.x; i < nclasses; i += WARP_SIZE) {
const float val = logits[i];
max_logit = fmaxf(max_logit, val);
if (use_shared) {
tmp[i] = val;
}
}
max_logit = warp_reduce_max(max_logit);
// Calculate log(softmax(logits)) which is just logits - max:
float sum = 0.0f;
for (int i = threadIdx.x; i < nclasses; i += WARP_SIZE) {
const float logit_i = use_shared ? tmp[i] : logits[i];
sum += expf(logit_i - max_logit);
}
sum = warp_reduce_sum(sum);
sum = logf(sum);
// log(exp(logits - max) / sum) = (logits - max) - log(sum)
float loss = 0.0f;
for (int i = threadIdx.x; i < nclasses; i += WARP_SIZE) {
const float logit_i = use_shared ? tmp[i] : logits[i];
loss += (logit_i - max_logit - sum) * labels[i];
}
loss = -warp_reduce_sum(loss) / (float)k;
if (threadIdx.x != 0) {
return;
}
dst[blockIdx.x] = loss;
}
template <bool use_shared>
static __global__ void cross_entropy_loss_back_f32(
const float * __restrict__ grad, const float * __restrict__ logits, const float * __restrict__ labels,
float * __restrict__ dst, const int nclasses) {
extern __shared__ float tmp[];
logits += int64_t(blockIdx.x)*nclasses;
labels += int64_t(blockIdx.x)*nclasses;
dst += int64_t(blockIdx.x)*nclasses;
float maxval = -INFINITY;
for (int i = threadIdx.x; i < nclasses; i += WARP_SIZE) {
const float val = logits[i];
maxval = fmaxf(maxval, val);
if (use_shared) {
tmp[i] = val;
}
}
maxval = warp_reduce_max(maxval);
float sum = 0.0f;
for (int i = threadIdx.x; i < nclasses; i += WARP_SIZE) {
const float val = expf((use_shared ? tmp[i] : logits[i]) - maxval);
sum += val;
if (use_shared) {
tmp[i] = val;
} else {
dst[i] = val;
}
}
sum = warp_reduce_sum(sum);
const float sm_scale = 1.0f/sum;
const float d_by_nrows = *grad/gridDim.x;
for (int i = threadIdx.x; i < nclasses; i += WARP_SIZE) {
const float val = use_shared ? tmp[i] : dst[i];
dst[i] = (val*sm_scale - labels[i])*d_by_nrows;
}
}
void ggml_cuda_cross_entropy_loss(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(ggml_is_contiguous(src1));
GGML_ASSERT(ggml_is_contiguous(dst));
const int64_t ne00 = src0->ne[0];
const int64_t nrows = ggml_nrows(src0);
const float * src0_d = (const float *) src0->data;
const float * src1_d = (const float *) src1->data;
float * dst_d = (float *) dst->data;
ggml_cuda_pool & pool = ctx.pool();
cudaStream_t stream = ctx.stream();
const dim3 blocks_dim(WARP_SIZE, 1, 1);
const dim3 blocks_num(nrows, 1, 1);
const size_t nbytes_shared = ne00*sizeof(float);
const int id = ggml_cuda_get_device();
const size_t smpbo = ggml_cuda_info().devices[id].smpbo;
ggml_cuda_pool_alloc<float> dst_tmp(pool, blocks_num.x);
if (nbytes_shared <= smpbo) {
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
static bool shared_memory_limit_raised[GGML_CUDA_MAX_DEVICES] = {false};
if (!shared_memory_limit_raised[id]) {
CUDA_CHECK(cudaFuncSetAttribute(cross_entropy_loss_back_f32<true>, cudaFuncAttributeMaxDynamicSharedMemorySize, smpbo));
shared_memory_limit_raised[id] = true;
}
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
cross_entropy_loss_f32<true><<<blocks_num, blocks_dim, nbytes_shared, stream>>>(src0_d, src1_d, dst_tmp.ptr, ne00, nrows);
} else {
cross_entropy_loss_f32<false><<<blocks_num, blocks_dim, 0, stream>>>(src0_d, src1_d, dst_tmp.ptr, ne00, nrows);
}
CUDA_CHECK(cudaGetLastError());
// Combine results from individual blocks:
sum_f32_cuda(pool, dst_tmp.ptr, dst_d, blocks_num.x, stream);
}
void ggml_cuda_cross_entropy_loss_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * grad = dst->src[0];
const ggml_tensor * src0f = dst->src[1];
const ggml_tensor * src1f = dst->src[2];
GGML_ASSERT(src0f->type == GGML_TYPE_F32);
GGML_ASSERT(src1f->type == GGML_TYPE_F32);
GGML_ASSERT( grad->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
GGML_ASSERT(ggml_is_scalar(grad));
GGML_ASSERT(ggml_is_contiguous(src0f));
GGML_ASSERT(ggml_is_contiguous(src1f));
GGML_ASSERT(ggml_is_contiguous(dst));
GGML_ASSERT(ggml_are_same_shape(src0f, src1f));
GGML_ASSERT(ggml_are_same_shape(src0f, dst));
const int64_t ne00 = src0f->ne[0];
const int64_t nrows = ggml_nrows(src0f);
const float * grad_d = (const float *) grad->data;
const float * src0f_d = (const float *) src0f->data;
const float * src1f_d = (const float *) src1f->data;
float * dst_d = (float *) dst->data;
cudaStream_t stream = ctx.stream();
const dim3 blocks_dim(WARP_SIZE, 1, 1);
const dim3 blocks_num(nrows, 1, 1);
const size_t nbytes_shared = ne00*sizeof(float);
const int id = ggml_cuda_get_device();
const size_t smpbo = ggml_cuda_info().devices[id].smpbo;
if (nbytes_shared <= smpbo) {
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
static bool shared_memory_limit_raised[GGML_CUDA_MAX_DEVICES] = {false};
if (!shared_memory_limit_raised[id]) {
CUDA_CHECK(cudaFuncSetAttribute(cross_entropy_loss_back_f32<true>, cudaFuncAttributeMaxDynamicSharedMemorySize, smpbo));
shared_memory_limit_raised[id] = true;
}
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
cross_entropy_loss_back_f32<true><<<blocks_num, blocks_dim, nbytes_shared, stream>>>(grad_d, src0f_d, src1f_d, dst_d, ne00);
} else {
cross_entropy_loss_back_f32<false><<<blocks_num, blocks_dim, 0, stream>>>(grad_d, src0f_d, src1f_d, dst_d, ne00);
}
}