Spaces:
Running
Running
# Implementation from https://einops.rocks/pytorch-examples.html slightly changed | |
import math | |
from typing import Tuple | |
import torch | |
from torch import nn | |
from einops import rearrange, repeat | |
class MultiHeadAttention(nn.Module): | |
""" | |
This is a slightly modified version of the original implementation from https://einops.rocks/pytorch-examples.html of multihead attention. | |
It keeps the original dimension division per head and masks the attention matrix before and after the softmax to support full row masking. | |
Args: | |
d_model: the input feature dimension of the model | |
n_head: the number of heads in the multihead attention | |
d_k: the dimension of the key and query in the multihead attention | |
d_v: the dimension of the value in the multihead attention | |
""" | |
def __init__(self, d_model: int, n_head: int, d_k: torch.Tensor, d_v: torch.Tensor): | |
super().__init__() | |
self.n_head = n_head | |
self.w_qs = nn.Linear(d_model, int(d_k / n_head) * n_head) | |
self.w_ks = nn.Linear(d_model, int(d_k / n_head) * n_head) | |
self.w_vs = nn.Linear(d_model, int(d_v / n_head) * n_head) | |
self.w_rs = nn.Linear(d_model, int(d_v / n_head) * n_head) | |
nn.init.normal_(self.w_qs.weight, mean=0, std=math.sqrt(2.0 / (d_model + d_k))) | |
nn.init.normal_(self.w_ks.weight, mean=0, std=math.sqrt(2.0 / (d_model + d_k))) | |
nn.init.normal_(self.w_vs.weight, mean=0, std=math.sqrt(2.0 / (d_model + d_v))) | |
nn.init.normal_(self.w_rs.weight, mean=0, std=math.sqrt(2.0 / (d_model + d_v))) | |
self.fc = nn.Linear(int(d_v / n_head) * n_head, d_model) | |
nn.init.xavier_normal_(self.fc.weight) | |
self.layer_norm = nn.LayerNorm(d_model) | |
def forward( | |
self, | |
q: torch.Tensor, | |
k: torch.Tensor, | |
v: torch.Tensor, | |
mask: torch.Tensor = None, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
""" | |
Compute the masked multi-head attention given the query, key and value tensors. | |
Args: | |
q: the query tensor of shape [batch_size, number_of_agents, d_model] | |
k: the key tensor of shape [batch_size, number_of_objects, d_model] | |
v: the value tensor of shape [batch_size, number_of_objects, d_model] | |
mask: the mask tensor of shape [batch_size, number_of_agents, number_of_objects] | |
Returns: | |
[ | |
The attention output tensor of shape [batch_size, number_of_agents, d_model], | |
The attention matrix of shape [batch_size, number_of_agents, number_of_objects] | |
] | |
""" | |
residual = q.clone() | |
r = self.w_rs(q) | |
q = rearrange(self.w_qs(q), "b a (head k) -> head b a k", head=self.n_head) | |
k = rearrange(self.w_ks(k), "b o (head k) -> head b o k", head=self.n_head) | |
v = rearrange(self.w_vs(v), "b o (head v) -> head b o v", head=self.n_head) | |
attn = torch.einsum("hbak,hbok->hbao", [q, k]) / math.sqrt(q.shape[-1]) | |
if mask is not None: | |
# b: batch, a: agent, o: object, h: head | |
mask = repeat(mask, "b a o -> h b a o", h=self.n_head) | |
attn = attn.masked_fill(mask == 0, -math.inf) | |
attn = torch.softmax(attn, dim=3) | |
# Here we need to mask again because some lines might be all -inf in the softmax which gives Nan... | |
attn = attn.masked_fill(mask == 0, 0) | |
output = torch.einsum("hbao,hbov->hbav", [attn, v]) | |
output = rearrange(output, "head b a v -> b a (head v)") | |
output = self.fc(output * r) | |
output = self.layer_norm(output + residual) | |
return output, attn | |