File size: 3,885 Bytes
21c7368
7e5db72
 
 
 
 
 
 
 
21c7368
7e5db72
aade1d5
 
 
21c7368
7e5db72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9edd29b
7e5db72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9edd29b
 
 
 
7e5db72
9edd29b
b56b376
9edd29b
 
 
 
 
 
 
 
7e5db72
 
9edd29b
 
7e5db72
 
9edd29b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import os
import zipfile
import numpy as np
import torch
from transformers import ViTForImageClassification, AdamW
import nibabel as nib
from PIL import Image
from torch.utils.data import Dataset, DataLoader
import streamlit as st

# 1. Function to extract zip files
def extract_zip(zip_file, extract_to):
    with zipfile.ZipFile(zip_file, 'r') as zip_ref:
        zip_ref.extractall(extract_to)

# 2. Preprocess images
def preprocess_image(image_path):
    ext = os.path.splitext(image_path)[-1].lower()

    if ext == '.nii' or ext == '.nii.gz':
        nii_image = nib.load(image_path)
        image_data = nii_image.get_fdata()
        image_tensor = torch.tensor(image_data).float()
        if len(image_tensor.shape) == 3:
            image_tensor = image_tensor.unsqueeze(0)

    elif ext in ['.jpg', '.jpeg']:
        img = Image.open(image_path).convert('RGB').resize((224, 224))
        img_np = np.array(img)
        image_tensor = torch.tensor(img_np).permute(2, 0, 1).float()

    else:
        raise ValueError(f"Unsupported format: {ext}")

    image_tensor /= 255.0  # Normalize to [0, 1]
    return image_tensor

# 3. Label images
def prepare_dataset(extracted_folder):
    image_paths = []
    labels = []
    for disease_folder in ['alzheimers', 'parkinsons', 'ms']:
        folder_path = os.path.join(extracted_folder, disease_folder)
        label = {'alzheimers': 0, 'parkinsons': 1, 'ms': 2}[disease_folder]
        for img_file in os.listdir(folder_path):
            if img_file.endswith(('.nii', '.jpg', '.jpeg')):
                image_paths.append(os.path.join(folder_path, img_file))
                labels.append(label)
    return image_paths, labels

# 4. Custom Dataset
class CustomImageDataset(Dataset):
    def __init__(self, image_paths, labels):
        self.image_paths = image_paths
        self.labels = labels

    def __len__(self):
        return len(self.image_paths)

    def __getitem__(self, idx):
        image = preprocess_image(self.image_paths[idx])
        label = self.labels[idx]
        return image, label

# 5. Training function
def fine_tune_model(train_loader):
    model = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224-in21k', num_labels=3)
    model.train()
    optimizer = AdamW(model.parameters(), lr=1e-4)
    criterion = torch.nn.CrossEntropyLoss()
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    model.to(device)
    
    for epoch in range(10):
        running_loss = 0.0
        for images, labels in train_loader:
            images, labels = images.to(device), labels.to(device)
            optimizer.zero_grad()
            outputs = model(pixel_values=images).logits
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()
            running_loss += loss.item()
    return running_loss / len(train_loader)

# Streamlit UI
st.title("Fine-tune ViT on MRI Scans")

# Input for zip file paths
zip_file_1 = st.text_input("https://huggingface.co/spaces/Tanusree88/ViT-MRI-FineTuning/resolve/main/archive%20(5).zip")
zip_file_2 = st.text_input("https://huggingface.co/spaces/Tanusree88/ViT-MRI-FineTuning/resolve/main/MS.zip")

if st.button("Start Training"):
    # Define an extraction directory
    extraction_dir = 'https://huggingface.co/spaces/Tanusree88/ViT-MRI-FineTuning/resolve/main/extracttedfiles'
    os.makedirs(extraction_dir, exist_ok=True)

    # Extract both zip files
    extract_zip(zip_file_1, extraction_dir)
    extract_zip(zip_file_2, extraction_dir)

    # Prepare dataset
    image_paths, labels = prepare_dataset(extraction_dir)
    dataset = CustomImageDataset(image_paths, labels)
    train_loader = DataLoader(dataset, batch_size=32, shuffle=True)

    # Fine-tune the model
    final_loss = fine_tune_model(train_loader)
    st.write(f"Training Complete with Final Loss: {final_loss}")