Spaces:
Sleeping
Sleeping
File size: 4,373 Bytes
21c7368 7e5db72 c8604b9 bb90c09 c8604b9 4b003fd c8604b9 bb90c09 8bbe6d9 4b003fd 8bbe6d9 4b003fd c8604b9 bb90c09 c8604b9 4b003fd bb90c09 7e5db72 bb90c09 9edd29b 4b003fd bb90c09 4b003fd 9edd29b 7e5db72 4b003fd 98e44a5 4b003fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
import os
import zipfile
import numpy as np
import torch
from transformers import ViTForImageClassification, AdamW
import nibabel as nib
from PIL import Image
from torch.utils.data import Dataset, DataLoader
import streamlit as st
# Function to extract zip files
def extract_zip(zip_file, extract_to):
with zipfile.ZipFile(zip_file, 'r') as zip_ref:
zip_ref.extractall(extract_to)
# Preprocess images
def preprocess_image(image_path):
ext = os.path.splitext(image_path)[-1].lower()
if ext in ['.nii', '.nii.gz']:
nii_image = nib.load(image_path)
image_data = nii_image.get_fdata()
image_tensor = torch.tensor(image_data).float()
if len(image_tensor.shape) == 3:
image_tensor = image_tensor.unsqueeze(0)
elif ext in ['.jpg', '.jpeg']:
img = Image.open(image_path).convert('RGB').resize((224, 224))
img_np = np.array(img)
image_tensor = torch.tensor(img_np).permute(2, 0, 1).float()
else:
raise ValueError(f"Unsupported format: {ext}")
image_tensor /= 255.0 # Normalize to [0, 1]
return image_tensor
# Prepare dataset
def prepare_dataset(extracted_folder):
# Ensure the path exists
neuronii_path = os.path.join(extracted_folder, "neuroniiimages")
if not os.path.exists(neuronii_path):
raise FileNotFoundError(f"The folder neuroniiimages does not exist in the extracted folder: {neuronii_path}")
image_paths = []
labels = []
for disease_folder in ['alzheimers_dataset', 'parkinsons_dataset', 'MSjpg']:
folder_path = os.path.join(neuronii_path, disease_folder)
# Check if the subfolder exists
if not os.path.exists(folder_path):
raise FileNotFoundError(f"The folder {disease_folder} does not exist at path: {folder_path}")
label = {'alzheimers_dataset': 0, 'parkinsons_dataset': 1, 'MSjpg': 2}[disease_folder]
for img_file in os.listdir(folder_path):
if img_file.endswith(('.nii', '.jpg', '.jpeg')):
image_paths.append(os.path.join(folder_path, img_file))
labels.append(label)
return image_paths, labels
# Custom Dataset class
class CustomImageDataset(Dataset):
def __init__(self, image_paths, labels):
self.image_paths = image_paths
self.labels = labels
def __len__(self):
return len(self.image_paths)
def __getitem__(self, idx):
image = preprocess_image(self.image_paths[idx])
label = self.labels[idx]
return image, label
# Training function
def fine_tune_model(train_loader):
model = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224-in21k', num_labels=3)
model.train()
optimizer = AdamW(model.parameters(), lr=1e-4)
criterion = torch.nn.CrossEntropyLoss()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
for epoch in range(10):
running_loss = 0.0
for images, labels in train_loader:
images, labels = images.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(pixel_values=images).logits
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
return running_loss / len(train_loader)
# Streamlit UI for Fine-tuning
st.title("Fine-tune ViT on MRI/CT Scans for MS & Neurodegenerative Diseases")
# Provide the correct zip file URL
zip_file_url = "https://huggingface.co/spaces/Tanusree88/ViT-MRI-FineTuning/resolve/main/neuroniiimages.zip"
if st.button("Start Training"):
extraction_dir = "extracted_files"
os.makedirs(extraction_dir, exist_ok=True)
# Download the zip file (this is a placeholder; use requests or any other method to download the zip file)
zip_file = "neuroniiimages.zip" # Assuming you downloaded it with this name
# Extract zip file
extract_zip(zip_file, extraction_dir)
# Prepare dataset
image_paths, labels = prepare_dataset(extraction_dir)
dataset = CustomImageDataset(image_paths, labels)
train_loader = DataLoader(dataset, batch_size=32, shuffle=True)
# Fine-tune the model
final_loss = fine_tune_model(train_loader)
st.write(f"Training Complete with Final Loss: {final_loss}")
|